• Title/Summary/Keyword: Nickel base alloys

Search Result 32, Processing Time 0.027 seconds

A Study on How Cyclic Casting of Base Metal Alloy for Dental Ceramic Crown May Effects upon Its Mechanical Properties and Microstructure (치과 도재용착 주조관용 비귀금속 합금의 반복주조가 기계적 특성 및 미세조직에 미치는 영향)

  • Choi, Un-Jae;Shin, Moo-Hak;Chung, Hee-Sun;Koh, Myoung-Won
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.9-20
    • /
    • 2003
  • Using a nickel-chrome casting alloy called 'Rexillium V' which is also available as base metal alloy for dental ceramic crown, 4 types of mixtures(A, B, C, D) with old and new metal were prepared for cyclic casting. The results of cyclic casting can be outlined as follows: 1. For Vickers hardness after casting, specimen A and D tended to have lower hardness in the course of cyclic casting, while specimen B and C tended to higher hardness. 2. The results of X-ray diffraction analysis showed that major crystal phase contained nickelchrome compounds and carbide. 3. The observation results of SEM photographs after cyclic casting show that there was a significant tendency to have similar structures among experimental groups. 4. The results of EDX analysis after cyclic casting showed that there were little differences in chemical composition between parent metal and base metal alloy. Although industrial nickel-chrome cast alloy did not show any significant change in material properties even through cyclic casting over several times, it is recommended that more there be more in-depth studies on how to detect any potential corrosion, discoloration and toxication of dental ceramic crown implanted in patient's oral cavity.

  • PDF

Concentration and separation of nickel from copper alloy dross using chelating regin (킬레이트 수지를 이용한 구리 합금 부산물에서의 니켈의 농축 및 분리)

  • Lee, Jung-Il;Kong, Man-Sik;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.114-118
    • /
    • 2013
  • Separation/recovery of valuable metals such as nickel or tin from copper based alloys has recently attracted from the viewpoints of environmental protection and resource recycling. In this report, preliminary study on concentration and separation of nickel from copper based alloy dross using selective adsorption by chelate resin was performed. The chelate resin used in this study has absorbed copper ions more easily than nickel ions in the metal solution, which could allow the concentration/separation of the nickel from the copper base alloy solution. The final molar ratios of Ni and Cu ions in the two concentrated solutions were 70 and 99 % respectively after three-time flowing the solution through the chelate resin column.

THE EFFECTS OF SURFACE TREATMENT OF DENIAL NICKEL-CHROMIUM ALLOY ON TENSILE BOND STRENGTH (치과용 니켈-크롬합금에 대한 표면 처리가 인장접착강도에 미치는 영향)

  • Lee, Eun-Suk;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.27 no.3 s.62
    • /
    • pp.493-502
    • /
    • 1997
  • This study was conducted to evaluate the tensile bond strength by bonding the dental bracket with Super-bond after treating the surface of dental Nickel-Chromium alloy with sandblasting, sandblasting & tin-plating, respectively, and tin-plating. 10 pieces of Nickel-Chromium alloys with brackets bonded with Super-bond without their surface treatment were sampled as a control group, 20 pieces of Nickel-Chromium alloy brackets bonded with Super-bond after treating them with sandblasting as group I, 20 pieces of Nickel-Chromium alloys tin-plated and bonded with Super-bond after sandblasting as group II, and then 20 pieces of alloys with brackets bonded with Super-bond after tin-plating as group III. The result of those examination and comparison is summarized as follows: 1. Group I showed the mean tensile bond strength of $14.41{\pm}2.24MPa$ which was highest among 4 groups, followed by group III($13.59{\pm}.51MPa$), group II($12.27{\pm}.45MPa$), and control group($10.50{\pm}1.57MPa$), respectively. However, it was shown that there was no statistically significant difference between group I and III, group III and II, and group II and control group(p>0.05). 2. The main failure pattern of those brackets showed that $70\%$ of the control group had an adhesive failure at the bracket-Superbond interface, and $30\%$ at the Nickel-Chromium alloy-Superbond interface, while other groups did the adhesive failure at the bracket-Superbond interface. 3. When examined under SEM, it was shown that adhesives were mostly attached to the surface of the Nickel-Chromium alloy for all groups while a considerable quantity of adhesives were attached to the bracket base. Then, those samples treated only with sandblasting showed the most even and remarkable roughness of their surface.

  • PDF

A Study on Fatigue Strength of Austenitic Stainless Steel for Centrifuge (원심분리기용 오스테나이트계 스테인리스강의 피로강도에 관한 연구)

  • Lee, Mee-Hae;Kim, Yong-Soo;Park, Joon-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.12-16
    • /
    • 2008
  • For industrial centrifuges, the state of their welding areas, even with a naked-eye observation, offers potential safety problems such as inconsistent bead formation. STS304, which is used mainly in centrifuges, is made of metal alloys with chrome and nickel as the main ingredients, offering excellent corrosion resistance, thermal resistance, and high strength, and thus allowing it to be used for diverse purposes. This paper conducted tensile and fatigue tests of STS304 to improve the safety of centrifuges. In the findings, for the static behavior of the STS304 material, welded specimens increased their yield and tensile strength compared with the base test specimens, but decreased their elongation ratio. Also, the data dispersion phenomenon of welded specimens remarkably increased.

Fabrication of Ultrafine Tungsten-based Composite Powders by Novel Reduction Process (신공정에 의한 초미립 텅스텐계 복합분말 제조)

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.338-342
    • /
    • 2012
  • A novel chemical method was evaluated to fabricate the ultrafine tungsten heavy alloy powders with bater-base solution made from the ammonium metatungstate (AMT), iron(II) chloride tetrahydrate ($FeCl_2{\cdot}4H_2O$), nickel(II) chloride hexahydrate ($NiCl_2{\cdot}6H_2O$) as source materials and the sodium tungstate dihydrate ($NaWO_4{\cdot}2H_2O$) as Cl-reductant. In the preparation of mixtures the amounts of the source components were chosen so as to obtain alloy of 93W-5Ni-2Fe composition(wt.%). The obtained powders were characterized by X-ray diffraction, XRF, field-emission scanning microscope (FESEM), and chemical composition was analyzed by EDX.

Welding Residual Stress and Strength of Thick 9% Nickel Steel Plate (9% 니켈강 후판 용접부의 강도 및 잔류응력)

  • Kim, Young-Kyun;Kim, Young-Wann;Kim, Jae-Hoon
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.85-90
    • /
    • 2014
  • In this paper, the transient thermal and residual stress analysis of the welding of 9% Ni steel plates using the FEA software ABAQUS are presented. The 9% Ni steel plates are welded manually with welding consumables of 70% Ni based Inconel type super-alloys (YAWATA WELD B (M)), producing a multi-pass/multi-layer butt weld. For these materials, temperature dependant mechanical and thermal material properties are used in the analysis. The back gouging is considered in welding process simulation. The FE thermal results are validated by comparing the real fusion profile and heat affected zone (HAZ). In addition, the continuous indentation test was conducted to measure the strength of base metal, HAZ and weld metal.

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

Microstructural Evaluation and High Temperature Mechanical Properties of Ni-22Cr-18Fe-9Mo ODS Alloy (Ni-22Cr-18Fe-9Mo계 ODS 합금의 미세조직 및 고온인장 특성 평가)

  • Jeong, Seok-Hoan;Kang, Suk-Hoon;Han, Chang-Hee;Kim, Tae-Kyu;Kim, Do-Hyang;Jang, Jin-Sung
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.456-462
    • /
    • 2011
  • Yttrium oxide is one of the most thermo-dynamically stable materials, so that it is generally used as a dispersoid in many kinds of dispersion strengthed alloys. In this study, a nickel-base superalloy is strengthened by dispersion of yttrium oxide particles. Elemental powders with the composition of Ni-22Cr-18Fe-9Mo were mechanically alloyed(M.A.) with 0.6 wt% $Y_2O_3$. The MA powders were then HIP(hot isotactic press)ed and hot rolled. Most oxide particles in Ni-22Cr-18Fe-9Mo base ODS alloy were found to be Y-Ti-O type. The oxide particles were uniformly dispersed in the matrix and also on the grain boundaries. Tensile test results show that the yield strength and ultimate tensile strength of ODS alloy specimens were 1.2~1.7 times higher than those of the conventional $Hastelloy^{TM}$ X(R), which has the same chemical compositions with ODS alloy specimens except the oxide particles.

MODIFICATION OF METAL MATERIALS BY HIGH TEMPERATURE PULSED PLASMA FLUXES IRRADIATION

  • Vladimir L. Yakushin;Boris A. Kalin;Serguei S. Tserevitionov
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1-1
    • /
    • 2000
  • The results of the modification of metal materials treated by high temperature pulst:d plasma fluxes (HTlPPF) with a specific power of incident flux changing in the $(3...100)10^5{]\;}W/cm^2$ range and a pulse duration lying from 15 to $50{\;}\mu\textrm{s}$ have been presented. The results of HTPPF action were studied on the stainless steels of 18Cr-l0Ni, 16Cr- 15Ni, 13Cr-2Mo types; on the structural carbon steels of (13...35)Cr, St. 3, St. 20, St. 45 types; on the tool steels of U8, 65G, ShHI5 types, and others; on nickel and high nickel alloy of 20Cr-45Ni type; on zirconium- and vanadium-base alloys and other materials. The microstructure and properties (mechanical, tribological, erosion, and other properties) of modified materials and surface alloying of metals exposed to HTPPF action have been investigated. It was found that the modification of materials by HTPPF resulted in a simultaneous increase of several properties of the treated articles: microhardness of the surface and layers of 40...60 $\mu\textrm{m}$ in depth, tribological characteristics (friction coefficient, wear resistance), mechanical properties ({\sigma_y}, {\;}{\sigma_{0.2}}.{\;}{\sigma_r}) on retention of the initial plasticity ($\delta$), corrosion resistance, radistanation erosion under ion irradiation, and others. The determining factor of the changes observed is the structural-phase modification of the near-surface layers, in particular, the formation of the fine cellular structure in the near-surface layers at a depth of $20{\;}{\mu\textrm{m}}$ with dimension of cells changing in the range from 0.1 to $1., 5{\;}\mu\textrm{m}$, depending on the kind of material, its preliminary treatment, and the parameters of plasma fluxes. The remits obtained have shown the possibility of purposeful surface alloying of metals exposed to HTPPF action over a depth up to 20...45 $\mu\textrm{m}$ and the concentration of alloying element (Ni, Cr, V) up to 20 wt.%. Possible industrial brunches for using the treatment have been also considered, as well as some results on modifying the serial industrial articles by HTPPF.

  • PDF

XU-TEC PROCESS AND XU-TEC SAW BLADES

  • Xu, Z.;Gao, Y.;Wang, C.Z.;Su, Y.A.;Tang, B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.06a
    • /
    • pp.154-154
    • /
    • 1995
  • The Xu-Tec process is also called the double glow surface alloying technology and is a new method of surface metallurgy which can produce an alloy layers with sp ecial phisical and chemical properties on the surface of common and inexpensive mater ials. Many super alloys and alloy steels, sueh as nickel base alloys, high speed steels and staiinless steels, have been produced by Xu-Tee Process on the surfaces of carbon steels. The depth of the alloy lasyers may vary from several microns up to 300 micr ons with alloying elements in a concentration of few percentage to 100%. World wide patents for Xu-Tec process have been granted in the United states, Canada, United Ki ngdom, Australia and Japan. High performance saw blades have been successfully produced by the Xu-Tee process with much simper processing steps and less cost than bimetal high speed saw blades. A comparison of the cutting times and wear rates of the Xu-Tee blades with the conventional bimetal blades has been made. The Xu-Tee bIases demonstrates sim ilar or better performance than bimetal blades. A Xu-Tec Unit for the commercial pr oduction of Xu-Tec saw blades has been designed and manufactured. This Unit can t reat 10,000 haek saw blades at one time. Three Xu-Tec hack saw blades production I ines have been set up in China. China.

  • PDF