• Title/Summary/Keyword: Nickel alloy

Search Result 393, Processing Time 0.024 seconds

A Study on How Cyclic Casting of Base Metal Alloy for Dental Ceramic Crown May Effects upon Its Mechanical Properties and Microstructure (치과 도재용착 주조관용 비귀금속 합금의 반복주조가 기계적 특성 및 미세조직에 미치는 영향)

  • Choi, Un-Jae;Shin, Moo-Hak;Chung, Hee-Sun;Koh, Myoung-Won
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.9-20
    • /
    • 2003
  • Using a nickel-chrome casting alloy called 'Rexillium V' which is also available as base metal alloy for dental ceramic crown, 4 types of mixtures(A, B, C, D) with old and new metal were prepared for cyclic casting. The results of cyclic casting can be outlined as follows: 1. For Vickers hardness after casting, specimen A and D tended to have lower hardness in the course of cyclic casting, while specimen B and C tended to higher hardness. 2. The results of X-ray diffraction analysis showed that major crystal phase contained nickelchrome compounds and carbide. 3. The observation results of SEM photographs after cyclic casting show that there was a significant tendency to have similar structures among experimental groups. 4. The results of EDX analysis after cyclic casting showed that there were little differences in chemical composition between parent metal and base metal alloy. Although industrial nickel-chrome cast alloy did not show any significant change in material properties even through cyclic casting over several times, it is recommended that more there be more in-depth studies on how to detect any potential corrosion, discoloration and toxication of dental ceramic crown implanted in patient's oral cavity.

  • PDF

Morphology Control of NiO Catalysts on NiCrAl Alloy Foam Using a Hydrothermal Method (수열합성법을 이용한 NiCrAl 합금 폼 위에 합성된 NiO 촉매 형상 제어)

  • Sin, Dong-Yo;Lee, Eun-Hwan;Park, Man-Ho;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.393-399
    • /
    • 2016
  • Flower-like nickel oxide (NiO) catalysts were coated on NiCrAl alloy foam using a hydrothermal method. The structural, morphological, and chemical bonding properties of the NiO catalysts coated on the NiCrAl alloy foam were investigated by field-emission scanning electron microscopy, scanning electron microscopy-energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. To obtain flower-like morphology of NiO catalysts on the NiCrAl alloy foam, we prepared three different levels of pH of the hydrothermal solution: pH-7.0, pH-10.0, and pH-11.5. The NiO morphology of the pH-7.0 and pH-10.0 samples exhibited a large size plate owing to the slow reaction of the hydroxide ($OH^-$) and nickel ions ($Ni^+$) in lower pH than pH-11.5. Flower-like NiO catalysts (${\sim}4.7{\mu}m-6.6{\mu}m$) were formed owing to the fast reaction of $OH^-$ and $Ni^{2+}$ by increased $OH^-$ concentration at high pH. Thus, the flower-like morphology of NiO catalysts on NiCrAl alloy foam depends strongly on the pH of the hydrothermal solution.

Synthesis and electromagnetic properties of FeNi alloy nanofibers using an electrospinning method

  • Lee, Young-In;Choa, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.218-222
    • /
    • 2012
  • FeNi alloy nanofibers have been prepared by an electrospinning process followed by air-calcination and H2 reduction to develop electromagnetic (EM) wave absorbers in the giga-hertz (GHz) frequency range. The thermal behavior and phase and morphology evolution in the synthetic processes were systematically investigated. Through the heat treatments of calcination and H2 reduction, as-spun PVP/FeNi precursor nanofiber has been stepwise transformed into nickel iron oxide and FeNi phases but the fibrous shape was maintained perfectly. The FeNi alloy nanofiber had the high aspect ratio and the average diameter of approximately 190 nm and primarily composed of FeNi nanocrystals with an average diameter of ~60 nm. The FeNi alloy nanofibers could be used for excellent EM wave absorbing materials in the GHz frequency range because the power loss of the FeNi nanofibers increased up to 20 GHz without a degradation and exhibited the superior EM wave absorption properties compared to commercial FeNi nanoparticles.

SCC Mechanism of Ni Base Alloys in Lead Contaminated Water

  • Hwang, Seong Sik;Kim, Dong Jin;Lim, Yun Soo;Kim, Joung Soo;Park, Jangyul;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.187-191
    • /
    • 2008
  • Transgranular stress corrosion cracking of nickel base alloys was reported by Copson and Dean in 1965. Study to establish this cracking mechanism needs to be carried out. Laboratory stress corrosion tests were performed for mill annealed(MA) or thermally treated(TT) steam generator tubing materials in a high temperature water containing lead. An electrochemical interaction of lead with the alloying elements of SG tubings was also investigated. Alloy 690 TT showed a transgranular stress corrosion cracking in a 40% NaOH solution with 5000 ppm of lead, while intergranular stress corrosion racking was observed in a 10% NaOH solution with 100 ppm lead. Lead seems to enhance the disruption of passive film and anodic dissolution of alloy 600 and alloy 690. Crack tip blunting at grain boundary carbides plays a role for the transgranular stress corrosion cracking.

Electrochemical Study of a Single Particle of Active Material for Secondary Battery using the Microelectrode (마이크로 전극에 의한 2차 전지용 활물질 단일 입자의 전기화학적 평가)

  • Kim Ho-Sung;Lee Choong-Gon
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.95-99
    • /
    • 2006
  • Electrochemical properties were studied for a single particle of active material of hydrogen storage alloy $(MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3})$ and nickel hydroxides $(NiOH)_2$ for the secondary Nickel Metal Hydride (Ni-MH) batteries using the microelectrode, which was manipulated to make electrical contact with an active material particle for cyclic voltammograms (CV) and potential-step experiments. As a result of CV test, it was found that three kinds of hydrogen oxidation peaks at -0.9, -0.75 and -0.65 V and hydrogen evolution peak at -0.98 V for hydrogen storage alloy were separately observed and two kinds of peaks of proton oxidation/reduction at 0.45 and 0.32 V and oxygen evolution reaction (OER) at 0.6 V for nickel hydroxides were also more clearly observed. Furthermore hydrogen diffusion coefficient within a single particle was also found to vary the order between $10^{-9}\;and\;10^{-10}cm^2/s$ over the course of hydrogenation and dehydrogenation process for potential-step experiments.

Investigation of Plated Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용될 도금전극 특성 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.192-193
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electro less plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. In this paper, we investigated low-cost Ni/Cu contact formation by electro less and electroplating for crystalline silicon solar cells.

  • PDF

Nickel Plating Techniques of Nylon-Inorganic Filler Alloy (Nylon-Inorganic Filler Alloy상의 니켈 도금 기술)

  • Roh, Yun-Chan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.67-72
    • /
    • 1999
  • Optimal pretreatment processes for metal plating on engineering plastics, especially on Nylon-inorganic filler alloy was studied. For Nylon-inorganic filler alloy, adhesion strength between resin surface and metal could be improved by just etching process that eliminate amorphous layer. In the SEM picture and surface roughness measurement, etching treatment was found to make enabled the surface condition very rough and the adhesion strength good. It was also found that the surface condition of plated article and its adhesion strength partly depended upon molding condition of Nylon-inorganic filler alloy. EDS, peaks showed that what kinds of and how much of the metal elements remained on the resin surface after pretreatment processes. Cr did not affect on adsorption of Sn and Pd remarkably.

  • PDF

The Influence on Castability of Nickel-Chromium Alloys according to Burn-out Temperature and Recast Content Ratio (소환온도(燒還溫度)와 재(再) 주조금속(鑄造金屬) 함량비(含量比)가 Ni-Cr계(係) 비귀금속(非貴金屬) 합금(合金)의 가주성(可鑄性)에 미치는 영향)

  • Lee, Hyo-Byeang
    • Journal of Technologic Dentistry
    • /
    • v.8 no.1
    • /
    • pp.51-55
    • /
    • 1986
  • The castability of base metal alloys for dental casting in influenced by burn-out temperature and recent percentage. Burn-out temperatures for casting are set at 200$^{\circ}F$ interval from 1000$^{\circ}F$ to 1800$^{\circ}F$. According to recast metal percent in new cast alloy metal alloys are tested. The results are as followings: 1. In the new alloy(100%), the castability is the most. 2. The burn-out temperature in 1600$\sim$1800$^{\circ}F$, castability of 100% new alloy was more four times than of 50% new alloy plus 50% recast alloy. The using of 50% new alloy and 50% recast alloy, therefore, was unlike in castability. 3. The burn-out temperature in 1600$^{\circ}F$, castability of 100% new alloy was more than four times in soaking 20 minutes, but there was no any difference at 18700$^{\circ}F$. 4. It is investigated that the optimal burn-out temperature is 1600$^{\circ}F$ for the C & B alloy.

  • PDF

The Margin Fit of Nickel-Chromium Metal Alloys used for the Production of Crown and Bridge Prosthetics (치관보철물(齒冠補綴物) 제작(製作)에 사용(使用)되는 Nickel-Chromium계(系) 합금(合金)의 치경부(齒頸部) 변록(邊綠)에 관(關)한 적합성(適合性))

  • Lee, In-Kyu;Choi, Un-Jae
    • Journal of Technologic Dentistry
    • /
    • v.13 no.1
    • /
    • pp.9-13
    • /
    • 1991
  • The purpose of this study was to determine the marginal fit of recasting by used nickel-chromium metal alloys, Hi-Crown, New-Crown and CB-80. Ninety crown prosthetics were divided into eighteen groups according to new to old metal ratios. Each crown was seated on its master die and then the marginal gaps were measured under optical microscope($\times$50). All groups were showed good marginal fit, except group 3 of Hi-Crown(156$\mu$m). The results suggest that the marginal fit of Ni-Cr metal alloy casting bodies were good as without concerned to mixed ratios and metals.

  • PDF

Die design for HIP'ing of Nickel-base Superalloys (초내열합금 HIP 성형을 위한 금형설계)

  • Lim J.S.;Yeom J.T.;Hou Bongliang;Park N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.139-142
    • /
    • 2004
  • Nickel base superalloys are widely used for high temperature applications due to heat resisting capability and corrosion resistance at high temperatures. Superalloys with many strengthening alloying elements are frequently used in powder form to alleviate harmful effects of alloy segregation. HIP (hot isostatic pressing) and DB (diffusion bonding) as a form of solid-state bonding process is used to make turbine components, such as integrated turbine rotors. HIP/DB process requires many technical overcomes related to dimensional changes as well as microstructural control. In this research, HIP/DB process for nickel base superalloys, Udimet 720 and MM 247, were investigated with a view to control the dimensional change during the consolidation process. Simple disc-shaped cans were used to select the conceptual die design for the control of the dimensional change especially in radial direction. The change in the shape of consolidated shape was investigated using commercial FE code with constitutive equations fur low temperature plasticity deformation.

  • PDF