• Title/Summary/Keyword: Nickel(I)

Search Result 213, Processing Time 0.021 seconds

Analysis on the Frumkin Adsorption Isotherm of the Over-Potentially Deposited Hydrogen (OPD H) at the Polycrystalline Ni | Alkaline Aqueous Electrolyte Interface Using the Phase-Shift Method

  • Chun Jang H.;Jeon Sang K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.146-151
    • /
    • 2001
  • The Frumkin adsorption isotherm of the over-potentially deposited hydrogen (OPD H) for the cathodic $H_2$ evolution reaction (HER) at the poly-Ni|0.05M KOH aqueous electrolyte interface has been studied using the phase-shift method. The behavior of the phase shift $(0^{\circ}\leq{\phi}\leq90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1\geq{\theta}\geq0)$ at the interface. The phase-shift method, i.e., the Phase-shift profile $(-{\phi}\;vs.\;E)$ for the optimum intermediate frequency, can be used as a new method to estimate the Frumkin adsorption isotherm $(\theta\;vs.\;E)$ of the OPD H for the cathodic HER at the interface. At the poly-Ni|0.05M KOH aqueous electrolyte interface, the rate (r) of change of the standard free energy of the OPD H with $\theta$, the interaction parameter (g) for the Frumkin adsorption isotherm, the equilibrium constant (K) for the OPD H with $\theta$, and the standard free energy $({\Delta}G_{\theta})$ of the OPD H with ${\theta}$ are $24.8kJ mol^{-1},\;10,\;5.9\times10^{-6}{\leq}K{\leq}0.13,\;and\;5.1\leq{\Delta}G_{\theta}\leq29.8kJ\;mol^{-1}$. The electrode kinetic parameters $(r,\;g,\;K,\;{\Delta}G_{\theta})$ depend strongly on ${\theta} (0{\leq}{\theta}{\leq}1)$.

Activation of Urease Apoprotein of Helicobacter pylori

  • Cho, Myung-Je;Lee, Woo-Kon;Song, Jae-Young;An, Young-Sook;Choi, Sang-Haeng;Choi, Yeo-Jeong;Park, Seong-Gyu;Choi, Mi-Young;Baik, Seung-Chul;Lee, Byung-Sang;Rhee, Kwang-Ho
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.533-542
    • /
    • 1999
  • H. pylori produces urease abundantly amounting to 6% of total protein of bacterial mass. Urease genes are composed of a cluster of 9 genes of ureC, ureD, ureA, ureB, ureI, ureE, ureF, ureG, ureH. Production of H. pylori urease in E. coli was studied with genetic cotransformation. Structural genes ureA and ureB produce urease apoprotein in E. coli but the apoprotein has no enzymatic activity. ureC and ureD do not affect urease production nor enzyme activity ureF, ureG, and ureH are essential to produce the catalytically active H. pylori urease of structural genes (ureA and ureB) in E.coli. The kinetics of activation of H. pylori urease apoprotein were examined to understand the production of active H. pylori urease. Activation of H. pylori urease apoprotein, pH dependency, reversibility of $CO_2$ binding, irreversibility of $CO_2$ and $Ni^{2+}$ incorporation, and $CO_2$ dependency of initial rate of urease activity have been observed in vitro. The intrinsic reactivity (ko) for carbamylation of urease apoprotein co expressed with accessory genes was 17-fold greater than that of urease apoprotein expressed without accessory genes. It is concluded that accessory genes function in maximizing the carbamylating deprotonated ${\varepsilon}$-amino group of Lys 219 of urease B subunit and metallocenter of urease apoprotein is supposed to be assembled by reaction of a deprotonated protein side chain with an activating $CO_2$ molecule to generate ligands that facilitate productive nickel binding.

  • PDF

Studies on Heavy Metal Ion Adsorption by Soils. -(Part 1) PH and phosphate effects on the adsorption of Cd, Cu, Ni and Zn by mineral soils with low CEC and low organic carbon content (중금속(重金屬) 이온의 토양(土壤) 흡착에 관한 연구 -(제1보) CEC 및 유기탄소 함량이 낮은 광물토양에의 Cd, Cu, Ni, 및 Zn의 흡착과 이에 미치는 pH 및 인산의 효과-)

  • Kim, Myung-Jong;Motto, Harry L.
    • Applied Biological Chemistry
    • /
    • v.20 no.3
    • /
    • pp.300-309
    • /
    • 1977
  • The information related to the heavy metal pollution in the environment was obtained from studies on the effects of pH, phosphate and soil properties on the adsorption of metal ions (Cd, Cu, Ni, and Zn) by soils. Three soil materials; soil 1 with low CEC (8.2 me/100g) and low organic carbon content (0.34%); soil 2 with high CEC (36.4 me/100g) and low organic carbon content (1.8%) and soil 3 with high CEC (49.9 me/100g) and high organic carbon content (14.7%) were used. Soils were adjusted to several pH's and equilibrated with metal ion mixtures of 4 different concentrations, each having equal equivalents of each metal ion (0.63, 1.88, 3.12 and 4.38 micromoles per one gram soil with and without 10 micromoles of phosphate per one gram soil). Reported here are the results of the equilibrium study on soil I. The rest of the results on soil 2 and soil 3 will be repoted subsequeutly. Generally higher metal ion concentration solution resulted in higher final metal ion concentrations in the equilibrated solution and phosphate had minimal effect except it tended to enhance removal of cadmium and zinc from equilibrated solutions while it tended to decrease the removal of copper and nickel. In soil 1, percentages of added metal ions removed at pH 5.10 were; Cu 97, Ni 69, Cd 63, and Zn 55, while increasing pH to 6.40, they were increased to Cu 90.9, Zn 99, Ni 96, and Cd 92 per As initial metal ion concentration increased, final metal ion concentrations in the equilibrated solution showed a relationship with pH of the system as they fit to the equation $p[M^{++}]=a$ pH+b where $p[M^{++}]=-log$[metal ion concentration in Mol/liter]. The magnitude of pH and soil effects were reflected in slope (a) of the equation, and were different among metal ions and soils. Slopes (a) for metal ions in the aqueous system are all 2. In soil 1 they were; Zn 1.23, Cu 0.99, Ni 0.69 and Cd 0.59 at highest concentration. The adsorption of Cd, Ni, and Zn in soil 1 could be represented by the Iangmuir isotherm. However, construction of the Iangmuir isotherm required the correction for pH differences.

  • PDF

Kinetic Study of Macrocyclic Ligand-Metal Ion Complexes (거대고리 리간드와 금속이온과의 착물에 관한 반응속도론적 연구)

  • Moon-Hwan Cho;Jin-Ho Kim;Hyu-Bum Park;Si-Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.366-370
    • /
    • 1989
  • A new macrocyclic ligand 1,15,18-triaza-3,4;12,13-dibenzo-5,8,11-cycloeicosane (NdienOdien$H_4$ = $N_3O_3$) has been synthesized and identified by element analysis, NMR and IR spectrophotometry. Stepwise protonation constants of ligand are determined by potentiometry in 95% methanol solution(I = 0.1 mol $dm^{-3}$, $Me_4$NCl). log $K_1$;log $K_2$;log $K_3$ = 9.1;8.1;3.6.The kinetics of the acid-promoted dissociation reactions of complex cations of nickel(II) and copper(III) with NdienOdien and NdienOen macrocyclic ligands having, respectively, 17 and 20 ring members, have been studied spectrophotometrically in HCl$O_4$ NaCl$O_4$ aqueous solutions. From the temperature effect on kinetic constant ($k_{obs}$), the parameters of activation(${\Delta}H^{\neq}$, ${\Delta}S^{\neq}$) of dissociation reaction for $ML^{2+}$ with $H^+$ ion have been determined. We have proposed the possible mechanism of the reaction from the data obtained.

  • PDF

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

A Study on Heavy Metal Concentrations in Waste Water Produced in the Casting Pickling Process at Dental Technical Laboratories (치과기공소 주조체 산세척과정에서 발생하는 폐수내 중금속 농도)

  • Jeong, Da-i;Sakong, Joon
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • Objectives: This study set out to measure the heavy metal concentrations in waste water produced in the casting pickling process at dental technical laboratories and examine the actual state of its treatment. Methods:The investigator measured the concentrations of each heavy metal at 55 dental technical laboratories using an inductively coupled plasma optical emission system. Results: The annual usage of electrolytes was under 10 L in 50 (90.9%), and was 10L or more in five (9.1%) laboratories. Among the laboratories, 15 (27.3%) commissioned the treatment of waste,12 (21.8%) treated the waste with general sewage,and 28 (50.9%) treated the waste in aseptic tank. The arithmetic $mean{\pm}standard$ deviation and the geometric mean of chrome(Cr) were $75.3{\pm}50.9$ and 58.3 mg/L; those of cobalt (Co) were $112.3{\pm}106.7$ and 66.1 mg/L; those of nickel (Ni) were $62.9{\pm}83.5$ and 8.9 mg/L; those of molybdenum (Mo) were $17.1{\pm}13.4$ and 12.0 mg/L; those of iron (Fe) were $31.5{\pm}44.1$ and 6.2 mg/L; those of lead (Pb) were $0.3{\pm}0.3$ and 0.3 mg/L; those of beryllium (Be) were $3.6{\pm}3.6$ and 2.0 mg/L. The hydrogen ion concentration was under pH 2 across all the samples. Conclusions: The findings show that the dental technical laboratories were not doing well with the separation, storage, collection, and treatment of the electrolytes they discarded, and that most of the electrolytes were introduced through the general sewage or aseptic tank. The causes of this include alack of perception among the practitioners at dental technical laboratories and contracted companies avoiding collection for economic reasons. There is a need for education to improve the perceptions of waste water treatment among the practitioners at dental technical laboratories. Environment-related departments should be stricter with legal applications in the central and local governments. It is also required to provide proper management of commissioned treatment.

Effect of Calcium Chloride and Sodium Chloride on the Leaching Behavior of Heavy Metals in Roadside Sediments (염화칼슘과 소금이 도로변 퇴적물의 중금속 용출에 미치는 영향)

  • Lee Pyeong koo;Yu Youn hee;Yun Sung taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.15-23
    • /
    • 2004
  • Deicer operations provide traffic safety during winter driving conditions in urban areas. Using large quantities of de-icing chemicals (i.e., $CaCl_2$ and NaCl) can cause serious environmental problems and may change behaviors of heavy metals in roadside sediments, resulting in an increase in mobilization of heavy metals due to complexation of heavy metals with chloride ions. To examine effect of de-icing salt concentration on the leaching behaviors and mobility of heavy metals (cadmium, zinc, copper, lead, arsenic, nickel, chromium, cobalt, manganese, and iron), leaching experiments were conducted on roadside sediments collected from Seoul city using de-icing salt solutions having various concentrations (0.01-5.0M). Results indicate that zinc, copper, and manganese in roadside sediments were easily mobilized, whereas chromium and cobalt remain strongly fixed. The zinc, copper and manganese concentrations measured in the leaching experiments were relatively high. De-icing salts can cause a decrease in partitioning between adsorbed (or precipitated) and dissolved metals, resulting in an increase in concentrations of dissolved metals in salt laden snowmelt. As a result, run-off water quality can be degraded. The de-icing salt applied on the road surface also lead to infiltration and contamination of heavy metal to groundwater.

THE EFFECT OF NiTi ROTARY INSTRUMENTATION ON THE CHANGE OF APICAL ROOT CANAL CURVATURE (NiTi Rotary Instrumentation이 근관만곡도 변화에 미치는 영향)

  • Lim, Hyoung-Tae;Hong, Chan-Ui;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.257-268
    • /
    • 1998
  • During cleaning and shaping of narrow and curved canals, it is very difficult or nearly impossible to maintain the original canal shape. Procedural accidents such as, ledge, zipping, perforation, and instrument breakage are frequently occurred and even may lead to failure of endodontic therapy. To prevent these kinds of accidents, various instrumentation techniques and materials have been introduced. Recently some nickel titanium (NiTi) files are introduced and it is reported that These NiTi files created rounder preparations with less transportation than conventional instruments in curved canals. This study compared the change of the canal curvature and procedural accidents after instrumentation produced by stainless steel K-flexo file, and NiTi rotary files (Profile 29 and Quantec 2000). Thirty narrow and curved canals (25-45 degree) of extracted human molars were randomly divided into three groups. In group 1, canals were instrumented using a step-back and watch-winding/pull motion with K-flexo files. In group 2, canals were prepared with Profile 29. Group 3, canals were prepared with Quantec 2000 files. Before and after preparation of canals, periapical radiographs were taken and scanned. The change of canal curvature were measured using Photoshop 4.0 program and the incidence of procedural accidents were also evaluated. The results were as follows: 1. All group showed some loss of canal curvature after instrumentation. 2. Average loss of canal curvature was $6.70{\pm}5.31$ degree for group 1, $3.80{\pm}2.57$ degree for group 2, and $5.40{\pm}4.83$ degree for group 3. All group There was significant change in curvature between before and after instrumentation (p<0.05). But there was no statistical difference amoung 3 groups. 3. In group I, there were no procedural accidents, such as ledging, perforation, or instrument fracture. In group 2, two cases of ledge and one case of instrument fracture were produced Goup 3, each one case of ledge, perforation and instrument fracture were occurred. Whthin the limits of above results, It seems that NiTi rotary instrumentation is not All Mighty and if we use uncarefully, it is more dangerous to produce some procedural accidents than conventional hand files. But more studies should be taken to evaluate the exact effects of NiTi rotary instrumentations.

  • PDF

Floristic Diversity of Serpentine Area in Andong, Korea (안동 사문암지대의 식물다양성)

  • Kim, Jung-Hyun;Kim, Sun-Yu;Jung, Eun-Hee;Kim, Jin-Seok;Noh, Tae-Kwon;Bae, Ho-Myung;Nam, Chun-Hee;Lee, Byoung Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.1
    • /
    • pp.19-38
    • /
    • 2016
  • This study was carried out to investigate the flora, vegetation and soil properties of serpentine area in Andong, Korea. The vascular plants identified during the seven-round field surveys were a total of 359 taxa: 88 families, 239 genera, 311 species, 6 subspecies, 33 varieties, 6 forms and 3 hybrids. 249 taxa were newly discovered in this region. The plant composition of serpentine area is the deciduous broad-leaved and conifer-mixed forest which is the common one in the middle part of the Korean peninsula. Four taxa of Korean endemic plants such as Clematis brachyura, Populus ${\times}$ tomentiglandulosa, Paulownia coreana and Aster koraiensis were collected. The vascular plants on the red list according to IUCN evaluation basis were found to be seven taxa: Near Threatened (NT) species of Hypericum attenuatum, Polygala tenuifolia and Senecio argunensis, Least Concern (LC) species of Penthorum chinense, Potentilla discolor and Acorus calamus, and Not Evaluate (NE) species of Scorzonera austriaca ssp. glabra. The floristic regional indicator plants found in this area were 19 taxa comprising two taxa of grade IV, five taxa of grade III, four taxa of grade II, and nine taxa of grade I. The naturalized plants were identified as 34 taxa and the percentage of naturalized index (NI) was 9.5 %, and urbanization index (UI) was 10.6 %. Forest soils contained high content of nickel and cadmium. The soil layer consists of loam and silt loam from the surface to a depth of 20 cm and loam and silt clay from a depth of 20 cm to 40 cm.

An Exploratory Study on the Structure of Fabric of Increasing Triboelectric Energy Harvesting by Applying Three-dimensional Embroidery Technique (입체 자수 기법을 적용한 마찰 에너지 수확 증대형 직물 구조의 탐색)

  • Yang, Jin-Hee;Cho, Hyun-Seung;Kim, Min-Ook;Kim, Jong-Baeg;Kim, Shin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.141-150
    • /
    • 2018
  • The purpose of this study is to investigate three-dimensional embroidery techniques for creating conductive fabric materials. Such techniques can increase the efficiency of energy harvesting by increasing the fabric's area during rubbing and brushing. We also investigate the fabric structure of the triboelectric energy harvesting type. Two experiments were conducted for this purpose. In Experiment I, the three-dimensional embroidery technique(satin technique, file technique) and the conductive fabric material(copper-based MPF, nickel-based MPF) were selected as the main variables affecting the efficiency of triboelectric energy harvesting from the human body. Four samples were fabricated according to a combination of two variables. In Experiment II, the harvesters fabricated by the three-dimensional embroidery method showing the highest efficiency were subjected to brushing processes and the voltages generated after processing were analyzed. As a result, in both conductive fabric materials, the pile embroidery fabric structure showed a higher efficiency than the satin structure. These results show the triboelectric energy harvesting principle, which is proportional to the charge density and the generated voltage. It can be seen that the structure of pile embroidery fabric with a large friction area is advantageous for increasing efficiency compared to satin embroidery-fabric structure with a relatively small friction area. Moreover, the energy harvesting efficiency after brushing was higher than that before processing due to the increased friction area, and it was found that the brushing method is advantageous for increasing the triboelectric-energy harvest.