본 연구에서는 DC 마그네트론 스퍼터를 사용하여 Cr/Co/Al-Ox/Co/Ni-Fe 다층박막에 다양한 두께의 Cr 하지층을 삽입함에 따른 자기적 특성 및 전기적 특성에 관하여 연구하였다. 3 nm 두께의 Cr 하지층 증착시 자기저항비의 변화는 관찰할 수 없었고 적정한 Cr두께가 증가함에 따라 Co의 보자력이 크게 증가되었다 또한, 산화시간이 길수록 두 강자성층간에 보자력 차이 및 절연층의 저항이 점차 증가하였는데, 이는 산화시간에 따라 상부층 계면의 평탄성의 증가에 기인하는 것으로 생각되며 TEM을 통하여 확인할 수 있었다. Cr 하지층 유무에 관계없이 최고 자기저항비가 나타나는 절연층의 산화시간은 60~70초로 비슷하였지만 Cr 두께가 증가할수록 자기저항비는 감소하였다. 이는 전극간 계면의 거칠기의 증가로 인해 미반응 Al의 잔존 확률이 상대적으로 커짐에 따라 터널 전자의 산란이 증가함으로써 나타나는 것으로 생각된다. 이러한 결과로 Cr하지층의 두께는 3 nm로 고정하였으며 하지층의 증착 및 적정산화를 통하여 두 강자성층간에 큰 보자력 차이를 유도할 수 있었다. 이는 재현성에 있어서 가장 큰 문제점을 지닌 TMR 소자에 매우 긍정적인 해결방안을 제시할 수 있게 된다.̄
고분자 전해질 연료전지 운전에 필요한 수소 공급 장치로서 플라즈마 개질 방법을 이용한 개질기와 일산화탄소 산화반응을 위한 전이 반응기를 설계 및 제작하였다. GlidArc 방전을 이용한 저온플라즈마 개질기는 Ni 촉매를 동시에 사용하여 $CH_4$ 개질함으로서 $H_2$ 선택도를 증대하였다. 개질기의 변수별 연구로서 촉매 온도, 가스 조성비, 전체 가스유량, 전압변화 그리고 개질 특성 및 최적 수소 생산조건을 연구하였으며, 전이반응기의 변수별 연구로서 선택적 산화반응기(PrOx)에 주입되는 공기량, 전이 반응기에 주입되는 수증기량 그리고 온도에 대하여 연구하였다. 플라즈마 개질기에서 최대 수소 생산 조건은 $O_2/C$ 비가 0.64, 가스유량은 14.2 l/min, 촉매 반응기 온도 $672^{\circ}C$ 그리고 유입전력이 1.1 kJ/L일 때 41.1%로 최대 수소 농도를 나타냈다. 그리고 이때의 $CH_4$ 전환율, $H_2$ 수율 그리고 개질기 에너지 밀도는 각각 88.7%, 54%, 35.2%를 나타냈다. 전이 반응기에서 모사된 개질 가스로부터 최대 CO 전환율을 보이는 조건은 2단으로 구성된 PrOx에 주입되는 $O_2/C$ 비가 0.3, HTS에서 주입되는 수증기 주입량 비가 2.8 그리고 HTS, LTS, PrOx I, PrOx II 반응기 온도가 475, 314, 260, $235^{\circ}C$ 일때 가장 높은 CO 전환율을 나타냈다. 플라즈마를 이용한 반응기는 예열 시간은 30분이 소요되었으며, 전이 반응기에서 나오는 최종 개질 가스의 조성은 $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% 그리고 $CH_4$ 4%로 나타냈다.
초고주파 집적회로의 핵심소자로 각광을 받고 있는 GaAs MESFET(MEtal-emiconductor)은 게이트 형성 공정이 가장 중요하며, WNx 내화금속을 이용한 planar 게이트 구조의 경우 임계전압(Vth:threshold voltage)의 균일도가 우수할 뿐만 아니라 특히 Side-wall을 이용한 self-align 게이트는 소오스 저항을 줄일 수 있어 고성능의 소자 제작을 가능하게 한다.(1) 본 연구의 핵심이 되는 Side-wall을 형성하기 위하여 PECVD법에 의한 SiOx 박막을 증착하고, 건식식각법을 이용하여 SiOx side-wall을 형성하였다. 이 공정을 이용하여 소오스 저항이 낮고 임계전압의 균일도가 우수한 고성능의 self-aligned gate MESFET을 제작하였다. 3inch GaAs 기판상에 이온주입법에 의한 채널 형성, d.c. 스퍼터링법에 의한 WNx 증착, PECVD법에 의한 SiOx 증착, MERIE(Magnetic Enhanced Reactive Ion Etcing)에 의한 Side-wall 형성, LDD(Lightly Doped Drain)와 N+ 이온주입, 그리고 RTA(Rapid Thermal Annealing)를 사용하여 활성화 공정을 수행하였다. 채널은 40keV, 4312/cm2로, LDD는 50keV, 8e12/cm2로 이온주입하였고, 4000A의 SiOx를 증착한 후 2500A의 Side-wall을 형성하였다. 옴익 접촉은 AuGe/Ni/Au 합금을 이용하였고, 소자의 최종 Passivation은 SiNx 박막을 이용하였다. 제작된 소자의 전기적 특성은 hp4145B parameter analyzer를 이용한 전압-전류 측정을 통하여 평가하였다. Side-wall 형성은 0.3$\mu\textrm{m}$ 이상의 패턴크기에서 수직으로 잘 형성되었고, 본 연궁에서는 게이트 길이가 0.5$\mu\textrm{m}$인 MESFET을 제작하였다. d.c. 특성 측정 결과 Vds=2.0V에서 임계전압은 -0.78V, 트랜스컨덕턴스는 354mS/mm, 그리고 포화전류는 171mA/mm로 평가되었다. 특히 본 연구에서 개발된 트랜지스터의 게이트 전압 변화에 따른 균일한 트랜스 컨덕턴스의 특성은 RF 소자로 사용할 때 마이크로 웨이브의 왜곡특성을 없애주기 때문에 균일한 신호의 전달을 가능하게 한다. 0.5$\mu\textrm{m}$$\times$100$\mu\textrm{m}$ 게이트 MESFET을 이용한 S-parameter 측정과 Curve fitting 으로부터 차단주파수 fT는 40GHz 이상으로 평가되었고, 특히 균일한 트랜스컨덕턴스의 경향과 함께 차단주파수 역시 게이트 바이어스, 즉 소오스-드레스인 전류의 변화에 따라 균일한 값을 보였다. 본 연구에서 개발된 Side-wall 공정은 게이트 길이가 0.3$\mu\textrm{m}$까지 작은 경우에도 사용가능하며, WNx self-align gate MEESFET은 낮은 소오스저항, 균일한 임계전압 특성, 그리고 높고 균일한 트랜스 컨덕턴스 특성으로 HHP(Hend-Held Phone) 및 PCS(Personal communication System)와 같은 이동 통신용 단말기의 MMICs(Monolithic Microwave Integrates Circuits)의 제작에 활용될 것으로 기대된다.
자연산화 $Al_2$O$_3$층이 형성된 하부형태 터널링 자기저항 다층박막이 기본진공도 $10^{-9}$ Torr을 유지하는 UHV 챔버내에서 이온빔 스퍼터링과 dc 마그네트론 스퍼터링 법으로 증착되었다. 제작된 스핀의존터널링 (SDT) 접합소자의 최대 터널링자기저항(TMR)와 최소 접합저항과 면적곱(R$_{j}$ A) 각각 16~17%와 50-60$\Omega$$\mu\textrm{m}$$^2$이었다. 자기장하에서 열처리한 SDT접합에 대한 TMR향상과 (R$_{j}$ A) 감소의 변화는 미미하였다. 접합면적이 81$\mu\textrm{m}$$^2$에서 47$\mu\textrm{m}$$^2$까지 접합크기가 작이짐에 따라 TMR이 증가하고 (R$_{j}$ A)이 감소하는 의존성이 관찰되었다. 이러한 현상을 하부층 단자의 판흐름 저항값 의존효과와 스핀채널효과로 설명하였다.
Cu(In,Ga)Se2 (CIGS) 박막 태양전지는 높은 효율과 낮은 제조비용, 높은 신뢰성으로 인해 박막 태양전지 중 가장 각광받고 있다. 특히 유리기판 대신 가볍고 유연한 철강소재나 플라스틱 소재를 이용하여 발전분야 외에 건물일체형, 수송용, 휴대용등 다양한 분야에 적용이 가능하다. 이러한 유연 기판을 이용한 CIGS 태양전지의 개발을 위해서는 기판의 특성에 따른 다양한 공정개발이 선행되어야 한다. Stainless steel과 같은 철강기판의 경우 Fe, Ni, Cr등의 불순물이 확산되어 흡수층의 특성을 저하시켜 효율을 감소시킨다. 따라서 이러한 철강 기판의 경우 불순물의 확산을 방지하는 확산방지막이 필수적이다. 이러한 유연기판의 특성을 고려하여 본 연구에서는 기존의 두껍고 추가 장비가 요구되는 SiOx나 Al2O3 대신 200nm 이하의 ZnO 박막을 이용하여 확산방지막을 제조하였다. 유연기판으로 STS 430 stainless steel을 이용하였다. 먼저 stainless steel 기판을 이용하여 기판에 의한 흡수층의 특성을 분석하였으며 ZnO 확산 방지막의 유무 및 두께에 따른 흡수층 및 소자의 특성을 분석하였다. 이때 확산 방지막은 기존 TCO 공정에서 사용되는 i-ZnO를 사용하였으며 RF sputter를 이용하여 50~200nm로 두께를 달리하며 특성 비교를 실시하였다. 효율은 확산방지막을 적용하지 않았을 때 약 5.9%에서 확산 방지막 적용시 약 10.7%로 증가하였다. 그 후 기판으로부터 확산되는 불순물의 유입에 의한 결함을 분석하기 위해 DLTS를 이용하여 소자 특성을 분석하였다. 온도는 80~300K으로 가변하며 측정을 실시하였으며 그 후 계산을 통해 activation energy와 capture cross section 값을 구하였다. DLTS 분석 결과 Ni이 CIGS 흡수층으로 확산되어 NiCu anti-site를 형성하여 태양전지의 효율을 감소시키는 것을 확인하였다. 모든 흡수층은 Co-Evaporation 방법을 이용하여 제조하였으며 제조된 흡수층은 SEM, XRF, XRD, GD-OES, PL, Raman등을 이용하여 분석하였으며 그 외 일반적인 방법을 이용하여 Mo, CdS, TCO, Al grid를 제조하였다. AR 코팅은 제외 하였으며 제조된 소자는 솔라 시뮬레이터를 이용하여 효율 특성 분석을 실시하였으며 Q.E. 분석을 실시하였다.
박막 실리콘 태양전지에 입사한 빛 중 흡수층인 진성 비정질 실리콘층(i-a-Si)에 흡수된 빛은 출력으로 변환되나, 기타의 층에서 흡수된 빛은 손실 성분이 된다. 이 중 흡수 손실이 큰 층은 도핑 층(p-a-SiC 및 n-a-Si)들인데, 이 들의 흡수 손실을 측정된 광학함수를 이용해 계산해 보면 Fig. 1과 같이 나타난다. p-a-SiC은 광 입사부에 위치하여 단파장 영역의 흡수 손실을 일으키고, n-a-Si 은 태양전지의 후면에 위치하여 장파장 영역의 흡수손실을 일으킨다. 이러한 도핑층에서의 흡수 손실을 제거 또는 개선하기 위해 도핑층의 재료를 기존 재료보다 광학적 밴드갭이 큰 재료로 대체하여 개선하는 방안에 대해 논하고자 한다. 금속 산화물의 밴드갭은 실리콘 화합물에 비하여 대체로 큰 값을 가지기 때문에 이를 기존의 실리콘 화합물 대신으로 사용한다면 광학적 흡수 손실을 효과적으로 줄일 수 있다. 단, 이때 태양전지의 광 전압을 결정하는 인자가 p층과 n층 사이의 일함수 차이에 해당하므로, p층의 대체층으로 사용 가능한 금속 산화물은 일함수가 큰(>5 eV) 재료 중에서 선택하는 것이 적합하며, n층의 대체층으로 사용 가능한 금속 산화물은 일함수가 작은(< 4.2 eV) 재료 중에서 선택하는 것이 적합하다. Table 1에서 p층과 n층 대체용 금속산화물의 후보들을 정리하였다. 먼저 도핑층에서의 광 흡수가 광손실이 될 수 밖에 없는 물리적 근거에 대해서 논하고, 그 실험적인 증명을 제시한다. 이러한 개념을 바탕으로 도핑층의 내부 전기장의 방향을 제어하여 전자-정공쌍을 분리 수집하는 방법을 실험적으로 구현하였다. 이어서 금속 산화물을 부분적으로 대체하여 흡수 손실을 개선하는 방안을 제시한다. WOx, NiOx, N doped ZnO 등을 적용하여 그 효과를 비교 검토하였다. 끝으로 금속산화믈 대체 또는 쇼트키 접합을 적용하여 도핑층의 광 흡수를 줄이고 효율을 향상하는 방안을 제시한다. 그 사례로서 WOx, MoOx, LiF/Al의 적용결과를 살펴보고 추가 개선방안에 대해 토의할 것이다. 결론적으로 광학적 밴드갭이 큰 재료를 도핑층 대신 사용하여 흡수 손실을 줄이는 것이 가능하다는 것을 알 수 있고, 이 때 일함수 조건이 만족이 되면 광 전압의 손실도 최소화할 수 있다는 점을 확인할 수 있었다. 현재까지 연구의 한계와 문제점을 정리하고, 추가 연구에 의한 개선 가능성 및 실용화 개발과의 연관관계 등을 제시할 것이다.
본 연구에서는 자기터널접합(MTJs; magnetic tunnel junctions)의 스위칭 자기장($H_{SW}$)을 감소시키기 위하여 자유층으로 비정질 강자성 $Co_{70.5}Fe_{4,5}Si_{15}B_{10}$ 단일(single) 및 합성형 반강자성(SAF; synthetic antiferromagnet) 층을 사용하였다. $Si/SiO_2/Ta$ 45/Ru 9.5/IrMn 10/CoFe 7/AlOx/CoFeSiB 7 or CoFeSiB (t)/Ru 1.0/CoFeSiB (7-t)/Ru 60 (in nm) MTJs의 자기저항과 스위칭 특성을 CoFe 자유층과 NiFe 자유층을 갖는 MTJs와 비교하여 조사하였다. CoFeSiB은 포화자화($M_s$)가 $560\;emu/cm^3$으로 CoFe보다 낮고, 이방성 상수(Ku)는 $2800 erg/cm^3$으로 NiFe보다 높다. CoFeSiB SAF 구조에서 CoFeSiB 사이의 Ru 두께가 1.0 nm일 때 교환결합에너지($J_{ex}$)는 $-0.003erg/cm^2$였다. 이와 같이 비교적 작은 $J_{ex}$ 때문에, CoFeSiB SAF 자유층을 갖는 MTJs의 실험 및 Landau-Lisfschitz-Gilbert(LLG)식에 의한 시뮬레이션 결과 모두에서 $H_{SW}$가 접합크기에 의존하는 경향을 보였다. CoFeSiB SAF 자유층 MTJ의 $H_{SW}$는 CoFe, NiFe 또는 CoFeSiB single을 자유층으로 하는 MTJs에 비해 훨씬 낮게 나타났다. 따라서 CoFeSiB SAF를 자유층으로 사용한 MTJ는 micrometer에서 submicrometer 크기 영역 모두에서 보지적의 감소와 민감도 증가와 같은 우수한 스위칭 특성을 갖는 것을 확인하였다.
In this study, the electrical characteristics of the nickel (Ni)/carbon nanotube (CNT)/$SiO_2$ structures were investigated in order to analyze the mechanism of CNT in MOS device structures. We fabricated 4H-SiC MOS capacitors with or without CNTs. CNT was dispersed by isopropyl alcohol. The capacitance-voltage (C-V) and current-voltage (I-V) are characterized. Both devices were measured by Keithley 4200 SCS. The experimental flatband voltage ($V_{FB}$) shift was positive. Near-interface trap charge density ($N_{it}$) and negative oxide trap charge density ($N_{ox}$) value of CNT embedded MOS capacitors was less than that values of reference samples. Also, the leakage current of CNT embedded MOS capacitors is higher than reference samples. It has been found that its oxide quality is related to charge carriers and/or defect states in the interface of MOS capacitors.
이 논문의 목적은 PEMFC 작동을 위한 플라즈마 개질 시스템의 최적 조건을 연구한 것이다. 플라즈마 개질 반응기는 니켈 촉매 반응기와 동시에 사용하여 수소 생성을 증대하였다. 또한 수성가스 전환 반응기 및 선택적 산화 반응기는 연료전지의 촉매 피독에 영향을 주는 일산화탄소의 농도를 10 ppm 이하로 줄이기 위하여 제작되었다. 플라즈마 개질기에서 최대 수소생산 조건은 S/C 비 3.2, 메탄 2.0 L/min, 촉매반응기 온도는 $700{\pm}5^{\circ}C$ 그리고 입력전력 900 W이다. 이때의 합성가스의 농도는 $H_2$ 70.2%, CO 7.5%, $CO_2$ 16.2%, $CH_4$ 1.8% 이다. 수소 수율, 수소 선택도 그리고 메탄 전환율는 각각 56.8%, 38.1%, 92.2%이다. 에너지 효율과 에너지 요구량은 37.0%, 183.6 kJ/mol 이다. 추가적으로 $CO_2/CH_4$ 비 실험을 진행하였다. 또한 수성가스 전환 반응기는 플라즈마 개질 반응기의 최적조건으로 실험을 진행하였으며, 출구 농도는 $H_2$ 68.0%, CO 337 ppm, $CO_2$ 24.0%, $CH_4$ 2.2%, $C_2H_4$ 0.4%, $C_2H_6$ 4.1% 이다. 이때의 선택적 산화 반응기의 실험결과는 $H_2$ 51.9%, CO 0%, $CO_2$ 17.3%를 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.