• Title/Summary/Keyword: NiCd

Search Result 808, Processing Time 0.023 seconds

Assessment of Heavy Metal Effects on the Freshwater Microalga, Chlorella vulgaris, by Chlorophyll Fluorescence Analysis (엽록소형광분석을 이용한 담수산 클로렐라(Chlorella vulgaris)에 미치는 중금속의 영향 평가)

  • Oh, Soon-Ja;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1591-1600
    • /
    • 2015
  • The response of the freshwater microalga, Chlorella vulgaris, to heavy metal stress was examined based on chlorophyll fluorescence analysis to assess the toxic effects of heavy metals in freshwater ecosystems. When toxic effects were analyzed using regular chlorophyll fluorescence analysis, photosystem II activity($F_v/F_m$) decreased significantly when exposed to $Cu^{2+}$ and $Hg^{2+}$ for 12 h, and decreased in the order of $Hg^{2+}>Cu^{2+}>Cd^{2+}>Ni^{2+}$ when exposed for 24h. The effective photochemical quantum yield(${\phi}{\prime}_{PSII}$), chlorophyll fluorescence decrease ratio($R_{Fd}$), minimal fluorescence yield($F_o$), and non-photochemical quenching(NPQ), but not photochemical quenching(qP), responded sensitively to $Hg^{2+}$, $Cu^{2+}$, and $Cd^{2+}$. These results suggest that $F_v/F_m$, as well as ${\phi}{\prime}_{PSII}$, $R_{Fd}$, $F_o$, and NPQ could be used to assess the effects of heavy metal ions in freshwater ecosystems. However, because many types of heavy metal ions and toxic compounds co-occur under natural conditions, it is difficult to assess heavy metal toxicity in freshwater ecosystems. When Chlorella was exposed to heavy metal ions for 12 or 24h, $F_v/F_m$ and maximal fluorescence yield($F_m$) changed in response to $Hg^{2+}$ and $Cu^{2+}$ based on image analysis. However, assessing quantitatively the toxic effects of several heavy metal ions is challenging.

Determination of Bioconcentration Factor of Heavy Metal (loid)s in Rice Grown on Soils Vulnerable to Heavy Metal (loid)s Contamination

  • Lee, Seul;Kang, Dae-Won;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Lee, Jin-Ho;Cho, Il Kyu;Moon, Byeong-Churl;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.106-114
    • /
    • 2017
  • There is an increasing concern over heavy metal(loid) contamination of soil in agricultural areas including paddy soils. This study was conducted to determine the bioconcentration factor (BCF) for heavy metal(loid)s to brown rice grown in paddy soils vulnerable to heavy metal(loid)s contamination, for the quantitative health risk assessment to the residents living nearby the metal contaminated regions. The samples were collected from 98 sites nationwide in the year 2015. The mean and range BCF values of As, Cd, Cu, Ni, Pb, and Zn in brown rice were 0.027 (0.001 ~ 0.224), 0.143 (0.001 ~ 2.434), 0.165 (0.039 ~ 0.819), 0.028 (0.005 ~ 0.187), 0.006 (0.001 ~ 0.048), and 0.355 (0.113 ~ 1.263), respectively, with Zn showing the highest. Even though the relationship between heavy metal(loid) contents in the vulnerable soils and metal contents in brown rice collected at the same fields was not significantly correlated, the relationship between log contents of heavy metal(loid)s in the vulnerable soils and BCF of brown rice wes significantly correlated with As, Cd, Cu, and Zn in rice. In conclusion, soil environmental risk assessment for crop uptake should consider the bioconcentration factor calculated using both the initial and vulnerable heavy metal(loid) contents in the required soil and the crop cultivated in the same fields.

Purification and Characterization of 2,3-Dihydroxybiphenyl 1,2- Dioxygenase from Comamonas sp.

  • Lee Na Ri;Kwon Dae Young;Min Kyung Hee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.16-25
    • /
    • 2001
  • A genomic library of biphenyl-degrading strain Comamonas sp. SMN4 was constructed by using the cosmid vector pWE15 and introduced into Escherichia coli. Of 1,000 recombinant clones tested, two clones that expressed 2,3-dihydroxybiphenyl 1,2-dioxygenase activity were found (named pNB 1 and pNB2). From pNB1 clone, subclone pNA210, demonstrated 2,3-dihydroxybiphenyl 1,2-dioxygenase activity, is isolated. 2,3-Dihydroxybiphenyl 1,2-dioxygenase (23DBDO, BphC) is an extradiol-type dioxygenase that involved in third step of biphenyl degradation pathway. The nucleotide sequence of the Comamonas sp. SMN4 gene bphC, which encodes 23DBDO, was cloned into a plasmid pQE30. The His-tagged 23DBDO produced by a recombinant Escherichia coli, SG 13009 (pREP4)(pNPC), and purified with a Ni-nitrilotriacetic acid resin affinity column using the His-bind Qiagen system. The His-tagged 23DBDO construction was active. SDS-PAGE analysis of the purified active 23DBDO gave a single band of 32 kDa; this is in agreement with the size of the bphC coding region. The 23DBDO exhibited maximum activity at pH 9.0. The CD data for the pHs, showed that this enzyme had a typical a-helical folding structures at neutral pHs ranged from pH 4.5 to pH 9.0. This structure maintained up to pH 10.5. However, this high stable folding strucure was converted to unfolded structure in acidic region (pH 2.5) or in high pH (pH 12.0). The result of CD spectra observed with pH effects on 23DBDO activity, suggested that charge transition by pH change have affected change of conformational structure for 23DBDO catalytic reaction. The $K_m$ for 2,3-dihydroxybiphenyl, 3-metylcatechol, 4-methylcatechol and catechol was 11.7 $\mu$M, 24 $\mu$M, 50 mM and 625 $\mu$M.

  • PDF

Study on the Chemical Characteristics of $PM_{10}$ at Background Area in Korean Peninsula (한반도 서해안 배경지역 미세입자의 화학적 특성 연구)

  • Bang So-Young;Baek Kwang-Wook;Chung Jin-Do;Nam Jae-Cheol
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.455-468
    • /
    • 2004
  • The purpose of this paper is to understand the time series and origin of a chemical component and to compare the difference during yellow sand episodes for analysis $PM_{10}$ chemical components in the region of west in Korean Peninsula, 1999-2001. An annual mean concentration of $PM_{10}$ is $29.1\;{\mu}g/m^3$. A monthly mean and standard deviation of $PM_{10}$ concentration are very high in spring but there is no remarkably seasonal variation. Also, water soluble ionic component of $PM_{10}$ be influenced by double more total anion than total cation, be included $NO_{3}^-\;and\;SO_{4}^{2-}$ for the source of acidity and $NH_{4}^+$ to neutralize. Tracer metals of $PM_{10}$ slowly increases caused by emitted for soil and ocean (Fe, Al, Ca, Mg, Na) and Zn, Pb, Cu, Mn for anthropogenic source. According to method of enrichment factor (E.F) and statistics, assuming that the origin of metal component in $PM_{10}$ most of element in the Earth's crust e.g. Mg, Ca, Fe originates soil and Cu, Zn, Cd, Pb derives from anthropogenic sources. The ionic component for $Na^{+}\;Cl^-,\;Mg^{2+}\;and\;Ca^{2+}$ and Mg, Al, Ca, Fe originated by soil component largely increase during yellow sand period and then tracer metal component as Pb, Cd, Zn decrease. According to factor analysis, the first group is ionic component ($Na^+,\;Mg^{2+},\;Ca^{2+}$) and metal component (Na, Fe, Mn and Ni) be influenced by soil. The second group, Mg, Cr also be influenced by soil particle.

A Study of Heavy Metal Pollutants in the Respirable Dust in Seoul Area (호흡성분진중의 중금속 오염도에 관한 조사연구)

  • Lim, Young-Wook;Chung, Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.68-78
    • /
    • 1989
  • The heavy metal of suspended particulates with human health has long been studied in environmental interest concerned. This study was intended to identify harmful heavy metals of the ambient air borne dusts which were related with the respirable sizes in the aerodynamics. Two sampling sites were selected comparatively; one was in the Shinchon area, which is the commercial district with heavy traffic and the other site was in the Bulgwang area which is residential area. The supended particulates were sampled by high volume air sample with 6 cascade impactor stages. The heavy metals in terms of As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V and Zn were determined by stomic absorption spectrometry or inductively coupled plasma emission spectrometry. The samples weretaken bimothly for seven consecutive days from May 1987 to March 1988. The annual average concentration of the respirable suspended dust of which diameter is less than 10$\mum$ was 152.59 $\mug/m^3$ of the Shinchon air samples; the respirable dust was equivalent to approximately 85% of the total suspended particulates. The annual average concentration of the respirable suspended dust of the Bulgwang air samples was 112.56 $\mug/m^3$; that was approximately 86% of the total suspended particulates. The concentration of heavy metals was investigated in relation to the particle size. The concentration of Cr, Fe, Mn and V were tended to be much more in the coarse particles than in the fine particles. Cd and Pb in the fine particles were more than in the coarse particles. In the partial correlation coefficients; in the Shinchon area, high correlations among Fe, Se and Mn were determined; it is assumed that those sources would be originated from coal, gasolineand diesel. In Bulgwang area, would be high correlation among Fe, Se, Hg and Mn considered to be originated from coal, Bunker-C and heavy oil as well. From the above results, the hazardous heavy merals in air should be measured and controlled in originally their sources.

  • PDF

An Assessment of the Long-Term Concentration of Heavy Metals and Associated Risk in Ambient PM-10 (PM-10 내 중금속의 장기간 평균농도 및 위해도 평가)

  • 이혜문;김동술;이진홍
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.5
    • /
    • pp.555-566
    • /
    • 1996
  • In order to assess the long-term airborne concentrations of 6 metals such as Cr, Cd, Pb, Zn, K, and Na and the associated health resk, a great number of PM-10 samples were collected and analyzed in Kyung Hee University-Suwon Campus for three years from 1991 to 1993. The 3-year average concentration of Pb in respirable particulate matters was 142.6 ng/m$^{3}$ while that of Zn was 1,210.5ng/m$^{3}$. The corresponding hazard index from Pb Zn for the ingalation route was estimated to be 9.5.times.10$^{-2}$ and 3.5.times.10$^{-2}$ , respectively. Therefore, it can be said that there was no adverse chronic health effects by airborne Pb and Zn. However, the 2-year average concentration of Cr(6) was estimated to be 1.3ng/m$^{3}$ shile the 3-year average concentration of Cd was 3.1ng/m$^{3}$. The total cancer risk by these two metals for the inhalation route was estimated to be about 7.2.times.10$^{-6}$ . This order-of-magnitude risk estimate suggests that the ingalation risk in the study area from all carcinogenic metals including As and Ni (subsulfide) might exceed the acceptable risk criteria of 10$^{-5}$ -10$^{-6}$ by U.S.EPA.For a better risk assessment in the future, alveolar deposition of PM-10 in the study area were also discussed and an assessment was done.

  • PDF

Statistical Analysis for Chemical Characterization of Fall-Out Particles (강하분진의 화학적 특성파악을 위한 통계학적 해석)

  • Kim, Hyeon-Seop;Heo, Jeong-Suk;Kim, Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.631-642
    • /
    • 1998
  • Fall-out particles were collected by the modified British deposit gauges at 35 sampling sites in Suwon area from January to November, 1996. Twenty chemical species (Al. Ba, Cd, Cr, K, Pb, Sb, Zn, Cu, Fe, Ni, V, F-, Cl-, NO3-, 5042-, Na+, NH4+, Mg2+, and Ca2+) were analyzed by AAS and If. The purposes of this study were to estimate qualitatively various emission sources of the fell-out particle by applying multivariate statistical techniques such as factor analysis, multiple regression analysis, and discriminant analysis. During the study, outlier sites were determined by a z-score method. Cl-, Na+, Mg2+, and SO42- were highly correlated due to their common marine related source. Wind speed was the most influential factor for the deposition fluxes of the particle itself and all the chemical species as well. When applying the factor analysis, 8 source patterns were qualitatively obtained, such as marine source, soil source, oil burning source, Cr related source, tire source, Cd related source, agriculture source, and F- related source. As a result of the multiple regression analysis, we could suggest that some chemical compounds may possibly exist in the form of CaSO4, NaN03, NaCl, MgC12, (NH4)2SO4, NaF, and CaCl2 in the fall-out particles. Finally, spatial and seasonal classification study performed by a discriminant analysis showed th.at SO42-, Ca2+, Cl-, and Fe were dominant in the group of spatial pattern; however, SO42-, Cl-, Al, and V were in the group of seasonal pattern.

  • PDF

Metal Concentrations in some Brown Seaweeds from Kongsfjorden on Spitsbergen, Svalbard Islands (스발바드군도 스피츠베르겐섬 콩스피요르드에 서식하는 갈조류의 중금속 농도)

  • Ahn, In-Young;Choi, Hee-Seon;Ji, Jung-Youn;Chung, Ho-Sung;Kim, Ji-Hee
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.121-132
    • /
    • 2004
  • Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn were determined in four arctic brown algae (Laminaria saccharina, L. digitata, Alaria esculenta, Desmarestia aculeata) in an attempt to examine for their metal accumulation capacity and also to assess their contamination levels. Macroalgae were collected from shallow subtidal waters (<20m) of Kongsfjorden (Kings Bay) on Spitsbergen during the period of the late July to early August 2003. Metal concentrations highly varied between sampling sites, species and tissue parts. Input of melt-water laden with terrigenous sediment particles seemed to have a large influence on baseline accumulations of some metals (Al, Fe, Mn, Pb etc.) in the macroalgae, causing a significant spatial variation. There were also significant concentration differences between the young and old tissue parts in L. saccharina, L. digitata and A. esculenta. While Al, Fe, Mn, Pb were higher in the perennial parts (stipes and holdfast below meristematic region), Cd and As concentrations were significantly higher in the young blades above the meristematic region. Zn and Cr, on the other hand, showed little differences between the tissue parts. The highest metal concentrations were found in D. aculeata, which seems to be due to its filamentous fine branches leading to high surface/volume ratios. The lowest concentrations were found in the two Laminaria spp., the blades of which are thicker than D. aculeata and A. esculenta. No distinct signs of contamination were detected in the brown algal species analyzed. Added to this, the results of the present studies suggest the potential utility of L. saccharina, L. digitata and A. esculenta as biomonitors for metal pollution monitoring in this area.

Aurora-A kinase-inactive mutants disrupt the interaction with Ajuba and cause defects in mitotic spindle formation and G2/M phase arrest in HeLa cells

  • Bai, Meirong;Ni, Jun;Shen, Suqin;Huang, Qiang;Wu, Jiaxue;Le, Yichen;Yu, Long
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.631-636
    • /
    • 2014
  • Aurora-A is a centrosome-localized serine/threonine kinase that is overexpressed in multiple human cancers. We previously reported an intramolecular inhibitory regulation of Aurora-A between its N-terminal regulatory domain (Nt, amino acids [aa] 1-128) and the C-terminal catalytic domain (Cd, aa 129-403). Here, we demonstrate that although both Aurora-A mutants (AurA-K250G and AurA-D294G/Y295G) lacked interactions between the Nt and Cd, they also failed to interact with Ajuba, an essential activator of Aurora-A, leading to loss of kinase activity. Additionally, overexpression of either of the mutants resulted in centrosome amplification and mitotic spindle formation defects. Both mutants were also able to cause G2/M arrest and apoptosis. These results indicate that both K250 and D294/Y295 are critical for direct interaction between Aurora-A and Ajuba and the function of the Aurora-A complex in cell cycle progression.

Health Risks to Children and Adults Residing in Riverine Environments where Surficial Sediments Contain Metals Generated by Active Gold Mining in Ghana

  • Armah, Frederick Ato;Gyeabour, Elvis Kyere
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.69-79
    • /
    • 2013
  • The purpose of this study was to investigate the current status of metal pollution in the sediment from rivers, lakes, and streams in active gold mining districts in Ghana. Two hundred and fifty surface sediment samples from 99 locations were collected and analyzed for concentrations of As, Hg, Cr, Co, Cu, Fe, Zn, Pb, Cd, Ni, and Mn using inductively coupled plasma-mass spectroscopy (ICP-MS). Metal concentrations were then used to assess the human health risks to resident children and adults in central tendency exposure (CTE) and reasonable maximum exposure (RME) scenarios. The concentrations of Pb, Cd, and As were almost twice the threshold values established by the Hong Kong Interim Sediment Quality Guidelines (ISQG). Hg, Cu, and Cr concentrations in sediment were 14, 20, and 26 times higher than the Canadian Freshwater Sediment Guidelines for these elements. Also, the concentrations of Pb, Cu, Cr, and Hg were 3, 11, 12, and 16 times more than the Australian and New Zealand Environment and Conservation Council (ANZECC) sediment guideline values. The results of the human health risk assessment indicate that for ingestion of sediment under the central tendency exposure (CTE) scenario, the cancer risks for child and adult residents from exposure to As were $4.18{\times}10^{-6}$ and $1.84{\times}10^{-7}$, respectively. This suggests that up to 4 children out of one million equally exposed children would contract cancer if exposed continuously to As over 70 years (the assumed lifetime). The hazard index for child residents following exposure to Cr(VI) in the RME scenario was 4.2. This is greater than the United States Environmental Protection Agency (USEPA) threshold of 1, indicating that adverse health effects to children from exposure to Cr(VI) are possible. This study demonstrates the urgent need to control industrial emissions and the severe heavy metal pollution in gold mining environments.