• Title/Summary/Keyword: Ni-rich

Search Result 209, Processing Time 0.03 seconds

Sintering and Electric Prooperties of Pb(Zn, Nb)$O_3$-Pb(Ni, Nb))$O_3$-$PbTiO_3$-$PbZrO_3$ System (Pb(Zn, Nb)$O_3$-Pb(Ni, Nb))$O_3$-$PbTiO_3$-$PbZrO_3$계 세라믹스의 소결 및 전기적 특성)

  • 박재성;이기태;남효덕
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.934-942
    • /
    • 1990
  • The quarternary system ceramics 0.5[yPb(Zn1/3Nb2/3)O3-(1-y)Pb(Ni1/3Nb2/3)O3]-0.5[xPbTiO3-(1-x)PbZrO3](PZN-PNN-PT-PZ) was fabricated by the columbite precursor method to obtain a stabilized perovskite structure and by conventional method to evaluate the efficiency of the former methd. Dielectric and piezoelectric properties were investigated and the stability of the perovskite phase was studied as a function of PZN and PT contents and firing temperature. In the samples prepared by the columbite precursor method, the pyrochlore phase, which is detrimental to both the dielectric and piezoelectric properties, was not observed in the absence of PZN, and electric properties were improved even when fabricated at low temperature. By adding PZN, some pyrochlore phase appeared and the morphotropic phase boundary of the samples shifted to more Zr-rich composition. The temperature dependence of piezoelectric constant decreased with the addition of PZN, due to the rising of the Curie point.

  • PDF

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

A comparative study on wear property of WC-CoCr and WC-CrC-Ni coatingssprayed by HVOF

  • Cho, J.Y.;Joo, Y.K.;Zhang, S.H.;Song, K.O.;Cho, T.Y.;Yoon, J.H.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.153-154
    • /
    • 2008
  • High velocity oxy-fuel (HVOF) thermal spraying coating has been used widely throughout the last 60 years mainly in defense, aerospace, and power plants. Recently this coating technique is considered as a promising candidate for the replacement of the traditional electrolytic hard chrome plating (EHC) which pollutes the environment and causes lung cancer by toxic hexa-valent $Cr^{6+}$. In this study, two kinds of cermet coatings, WC-CoCr and WC-CrC-Ni, are formed by HVOF spraying. The wear properties of coatings are evaluated comparatively by reciprocating sliding wear tests at $25^{\circ}C$, $250^{\circ}C$ and $450^{\circ}C$ respectively. Wear rates show that WC-CoCr coatings have better sliding wear resistance than WC-CrC-Ni coatings regardless of temperature due to more, compact and homogeneously distributed WC particles, less metal content, Co, Cr rich metallic bindermatrix with higher fracture strength and better adhesive strength with WC particles.

  • PDF

Study of High Temperature of Inconel 740 Alloy in Air and Ar-0.2%SO2 Gas (대기 및 Ar-0.2%SO2가스에서 Inconel 740 합금의 고온부식 연구)

  • Lee, Dong Bok;Kim, Min Jung
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.2
    • /
    • pp.43-52
    • /
    • 2021
  • The Ni-based superalloy, Inconel 740, was corroded between 800 and 1100℃ for up to 100 hr in air and Ar-0.2%SO2 gas in order to study its corrosion behavior in air and sulfur/oxygen environment. It displayed relatively good corrosion resistance in both environment, because its corrosion was primarily dominated by not sulfidation but oxidation especially in Ar-0.2%SO2 gas. Such was attributed to the thermodynamic stability of oxides of alloying elements when compared to corresponding sulfides. The scales consisted primarily of Cr2O3, together with some NiAl2O4, MnCr2O4, NiCrMnO4, and rutile-TiO2. Sulfur from SO2 gas made scales prone to spallation, and thicker. It also widened the internal corrosion zone when compared to air. The corrosion resistance of IN740 was mainly indebted to the formation of protective Cr2O3-rich oxides, and suppression of the sulfide formation.

Improved Performance of Lithium-Ion Batteries using a Multilayer Cathode of LiFePO4 and LiNi0.8Co0.1Mn0.1O2

  • Hyunchul Kang;Youngjin Kim;Taeho Yoon;Junyoung Mun
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.320-325
    • /
    • 2023
  • In Li-ion batteries, a thick electrode is advantageous for lowering the inactive current collector portion and obtaining a high energy density. One of the critical failure mechanisms of thick electrodes is inhomogeneous lithiation and delithiation owing to the axial location of the electrode. In this study, it was confirmed that the top layer of the composite electrode contributes more to the charging step owing to the high ionic transport from the electrolyte. A high-loading multilayered electrode containing LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) was developed to overcome the inhomogeneous electrochemical reactions in the electrode. The electrode laminated with LFP on the top and NCM811 on the bottom showed superior cyclability compared to the electrode having the reverse stacking order or thoroughly mixed. This improvement is attributed to the structural and interfacial stability of LFP on top of the thick electrode in an electrochemically harsh environment.

The Effect of Thermomechanical Treatment on the Transformation Characteristics and Mechanical Properties in a Cu-Al-Ni-Ti-Mn Alloy (Cu-Al-Ni-Ti-Mn 합금의 변태특성 및 기계적 성질에 미치는 가공열처리의 영향)

  • Kim, C.D.;Lee, Y.S.;Yang, G.S.;Jang, W.Y.;Kang, J.W.;Baek, S.N.;Gwak, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.145-156
    • /
    • 1999
  • The distribution of the second phase, the change of transformation temperature and mechanical properties with thermomechanical treatment conditions were investigated by metallography, calorimetry, EDS, tensile test and fractography in a Cu-Al-Ni-Ti-Mn alloy. The cast structure revealed Ti-rich precipitates($X_L$ phase) between dendrite arms, which have been identified as $(Cu,Ni)_2TiAl$ intermetallic compounds. By homogenizing above $900^{\circ}C$, the $X_L$ phase was melted in the matrix, while the Xs phase was precipitated in matrix and the volume fraction of it was increased. When hot-rolled specimen was betatized below $750^{\circ}C$, recrystallization could not be observed. However, the specimen betatized above $800^{\circ}C$ was recrystallized and the grain size was about $50{\mu}m$, while Xs phase was precipitated in matrix. With raising betatizing temperature, $M_s$ and $A_s$ temperatures were fallen and transformation hysteresis became larger. The strain of the specimen betatized at $800^{\circ}C$ was 8.2% as maximum value. The maximum shape recovery rate could be obtained in the specimen betatized at $800^{\circ}C$ but it was decreased due to the presence of Xs phase with increasing betatizing temperature.

  • PDF

Hot Corrosion Behavior of Inconel Alloys and Incoloy 800H in Molten LiCl-Li2O Salt (LiCl-Li2O 용융염에서 Inconel 합금 및 Incoloy 800H의 고온 부식거동)

  • Lim, Jong-Ho;Choi, Jeong-Mook
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.128-134
    • /
    • 2013
  • A study on the corrosion behavior of Inconel alloys and Incoloy 800H in molten salt of LiCl-$Li_2O$ was investigated at $650^{\circ}C$ for 24-312 hours in an oxidation atmosphere. The order of the corrosion rate was Inconel 600 < Inconel 601 < Incoloy 800H < Inconel 690. Inconel 600 showed the best performance suggesting that the content of Fe, Cr and Ni are the important factor for corrosion resistance in hot molten salt oxidation conditions. The corrosion products of Inconel 600 and Inconel 601 were $Cr_2O_3$ and $NiFe_2O_4$, In case of Inconel 690, a single layer of $Cr_2O_3$ was formed in the early stage of corrosion and an outer layer of $NiFe_2O_4$ and inner layer of $Cr_2O_3$ were formed with an increase of corrosion time. In the case of Incoloy 800H, $Cr_2O_3$ and $FeCr_2O_4$ were observed. Most of the outer scale of the alloys was observed to be spalled from the results of the SEM analysis and the unspalled scale which adhered to the substrate was composed of three layers. The outer layer, the middle one, and the inner one were Fe, Cr, and Ni-rich, respectively. Inconel 600 showed localized corrosion behavior and Inconel 601, 690 and Incoloy 800H showed uniform corrosion behavior. Ni improves the corrosion resistance and too much Cr and/or Fe content deteriorates the corrosion resistance.

A Study on the Oxidation Behavior of Metal Materials Applicable to Oxidizer Rich Pre-Combustor (산화제 과잉 연소기에 활용 가능한 금속재료의 산화 거동에 관한 연구)

  • Shin, Donghae;Yu, Isang;Shin, Minku;Ko, Youngsung;So, Younseok;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.118-125
    • /
    • 2019
  • Metals exposed to high temperature/high pressure/oxidant excess environment of an oxygen excess pre-combustor may undergo rapid oxidation. In this study, the test facility to simulate the high temperature/high pressure/oxidant excess environment was constructed and the oxidation resistance evaluation was carried out for various metal materials. As a result, the discoloration of the metallic materials, the change in the surface roughness and the peeling of the metal surface were observed, and the weight change was also observed. The resulst showed that oxidation-resistant coating of a metal material of the combustor is indispensably required, and the use of XM-19, which has the highest content of Cr and Ni, is expected to provide more structural stability.

High Strength SA508 Gr.4N Ni-Cr-Mo Low Alloy Steels for Larger Pressure Vessels of the Advanced Nuclear Power Plant (차세대 원전 대형 압력용기용 고강도 SA508 Gr.4N Ni-Cr-Mo계 저합금강 개발)

  • Kim, Min-Chul;Park, Sang-Gyu;Lee, Ki-Hyoung;Lee, Bong-Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.100-106
    • /
    • 2014
  • There is a growing need to introduce advanced pressure vessel steels with higher strength and toughness for the optimizatiooCn of the design and construction of longer life and larger capacity nuclear power plants. SA508 Gr.4N Ni-Cr-Mo low alloy steels have superior strength and fracture toughness, compared to SA508 Gr.3 Mn-Mo-Ni low alloy steel. Therefore, the application of SA508 Gr.4N low alloy steel could be considered to satisfy the strength and toughness required in advanced nuclear power plants. The purpose of this study is to characterize the microstructure and mechanical properties of SA508 Gr.4N low alloy steels. 1 ton ingot of SA508 Gr.4N model alloy was fabricated by vacuum induction melting followed by forging, quenching, and tempering. The predominant microstructure of the SA508 Gr.4N model alloy is tempered martensite having small packet and fine Cr-rich carbides. The yield strength at room temperature was 540MPa, and it was decreased with an increase of test temperature while DSA phenomenon occurred at around $288^{\circ}C$. Overall transition property of SA508 Gr.4N model alloy was much better than SA508 Gr.3 low alloy steel. The index temperature, $T_{41J}$, of SA508 Gr.4N model alloy was $-132^{\circ}C$ in Charpy impact tests, and reference nil-ductility transition temperature, $RT_{NDT}$ of $-105^{\circ}C$ was obtained from drop weight tests. From the fracture toughness tests performed in accordance with the ASTM standard E1921 Master curve method, the reference temperature, $T_0$ was $-147^{\circ}C$, which was improved more than $60^{\circ}C$ compared to SA508 Gr.3 low alloy steels.

High Temperature Compressive Properties of Tungsten Activated Sintered Pare Prepared by 0.4 wt.% Ni-doped Tungsten Powder Compacts (0.4 wt% Ni을 첨가한 W 활성소결체의 고온압축 특성 연구)

  • 이승익;김순욱;박영삼;문인형
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.307-314
    • /
    • 2002
  • The high temperature deformation behavior of the activated sintered W powder compacts was investigated. The W compact showed the relative density of 94% with the average W grain size of $23\mutextrm{m}$ by activated sintering at $1400^{\circ}C$ for 1 hour. Compression tests were carried out in the temperature range of $900-1100^{\circ}C$ at the strain rate range of $10^{0}$/sec - $10^{-3}$/sec. True stress-strain curve and microstructure exhibited the grain boundary brittleness which was dependent on the compression test temperature. The activated sintered W compact showed that the maximum stress as well as the strain at the maximum stress was abruptly decreased as the test temperature increase from $900^{\circ}C$ to 1000 and $1100^{\circ}C$ regardless of the strain rate. The discrepancy of the microstructure in the specimen center was obviously observed with the increase of the test temperature. After compression test at $900^{\circ}C$ the W grain was severely deformed normally against the compression axis. However, after compression test at $1000^{\circ}C$ and $1100^{\circ}C$ the W grain was not deformed, but the microcrack was formed in the W grain boundary. The Ni-rich second phase segregated along the W grain boundary could be partly unstable over $900^{\circ}C$ and affect the poor mechanical property of the activated sintered W compact.