• 제목/요약/키워드: Ni-based superalloys

검색결과 29건 처리시간 0.022초

Ni 기지 초내열합금의 고온산화 저항성에 미치는 Ti의 영향 (Effects of Ti on High Temperature Oxidation of Ni-Based Superalloys)

  • 박시준;서성문;유영수;정희원;장희진
    • Corrosion Science and Technology
    • /
    • 제15권3호
    • /
    • pp.129-134
    • /
    • 2016
  • The effects of Ti on the high temperature oxidation of Ni-based superalloys were investigated by cyclic oxidation at $850^{\circ}C$ and $1000^{\circ}C$. The oxide scale formed at $850^{\circ}C$ consists of $Cr_2O_3$, $Al_2O_3$, and $NiCr_2O_4$ layers, while a continuous $Al_2O_3$ layer was formed at $1000^{\circ}C$. The oxidation rate of the alloy with higher Ti content was higher than the alloy with less Ti content at $850^{\circ}C$, possibly due to the increase in the metal vacancy concentration in the $Cr_2O_3$ layer involved by incorporation of $Ti^{4+}$. However, Ti improved the oxidation resistance of the superalloy at $1000^{\circ}C$ by reducing oxygen vacancy concentration in $Al_2O_3$ layer.

IN738LC 초내열합금 정밀 주조의 주조 및 열처리 미세조직에 구성되는 성분 편석 현상 (Segregation Phenomenon of As-Cast and Heat Treatment Microstructures in Investment Casting of IN738LC Superalloy)

  • 최병학;한성희;김대현;안종기;이재현
    • 한국재료학회지
    • /
    • 제31권7호
    • /
    • pp.409-419
    • /
    • 2021
  • The effect of solidification rate on micro-segregation in investment casting of IN738LC superalloy was studied. In Ni-based superalloys, the micro-segregation of solute atoms is formed due to limited diffusion during cast and solidification. The microstructure of cast Ni-based superalloys is largely divided into dendrite core of initial solidification and interdendrite of final solidification. In particular, mosaic shaped eutectic γ/γ' and carbides are formed in the interdendrite of the final solidification region in some cases. The micro-segregation phenomena formed in regions of dendrite core and interdendrite including eutectic γ/γ' and carbides were analyzed using OM, SEM/EDS and micro Vickers hardness. As a result of analysis, the lack of (Cr, W) and the accumulation of Ti were measured in the eutectic γ/γ', and the accumulation of (Cr, Mo) and the lack of Ti were measured in the interdendrite between dendrite and eutectic. Carbides formed in interdendritic region were composed of (Ti, W, Mo, C). The segregation applied to each microstructure is mainly due to the formation of γ' with Ni3(Al,Ti) composition. The Ni accumulation accompanied by Cr depletion, and the Ti accumulated in the eutectic region as a γ' forming elements. The Mo tends to diffuse out from the dendrite core to the interdendrite, and the W diffuse out from the interdendrite to the dendrite core. Therefore, the accumulation of Mo in the interdendrite and the deficiency of W occur in the eutectic region located in the interdendrite. Heat treatment makes the degree of the micro-segregation decrease due to the diffusion during solid solution. This study could be applied to the heat treatment technology for the micro-segregation control in cast Ni-based superalloys.

니켈기 초내열합금의 고온연성거동에 관한 연구 (A Study on Hot Ductility Behavior of Ni-based Superalloys)

  • 이청래;엄상호;김성욱;최철;이창희
    • Journal of Welding and Joining
    • /
    • 제22권2호
    • /
    • pp.59-68
    • /
    • 2004
  • Plasma transferred arc welding (PTAW) has been taken into consideration for repairing Ni-based superalloy components used gas turbine blades. Various cracks has been generally reported to be found in the base metal heat affected zone(HAZ) along grain boundary. Thus, hot cracking susceptibility of Ni-based superalloys was evaluated according to heat treatments. Hot ductility test was conducted on specimens with solution treated at 112$0^{\circ}C$ for 2 hours and aging treated at 845$^{\circ}C$ for 24hours after solution treatment. The results of the hot ductility test appeared that solution treated specimens were the highest ductility recovery rate among three conditions. The loss of ductility at high temperature in Ni-based superalloy was mainly controlled by the degree of pain boundary wetting due to constitutional liquation of MC carbide precipitates. Meanwhile, the highest ductility recovery rate in solution-treated alloys seems to be lack of M23C6, which can be dissolved during heating and then result in the local enrichment of Cr in the vicinity of the grain boundary.

니켈기 초합금 소재 고온부 부품의 재생정비기술 (Rejuvenation Technologies for Hot Gas Path Components made of Nickel Based Superalloys)

  • 강신호;최희숙;김대은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.424-429
    • /
    • 2003
  • Hot gas path components, which are made of nickel based superalloys, are subject to periodic replacement due to degradation of thermomechanical properties that might bring catastrophic failure during normal operation of gas turbine units. In order to rejuvenate the metallurgical condition of the serviced components, heat treating techniques such as solution annealing and aging heat treatments have widely been employed. However, the effectiveness of those typical heat treatments is not apparent enough in terms of quantitative grounds. On the other hand the demand of the rejuvenation heat treatment and hot isostatic pressing (HIP) have constantly been raised by the end users. Therefore it is necessary to verify how the typical heat treating techniques affect to the aged and degraded material. As the result of experimental work in this study, GTD-111 and GTD-222 Ni-based superalloys were collected and analyzed quantitatively through microscopic observation, microhardness evaluation and creep test.

  • PDF

Ni-Cr-Fe 및 Ni-Fe-Cr-Mo계 합금의 용접부 균열특성에 관한 연구 Part I : 용착금속의 응고균열 (A Study on the Cracking Behavior in the Welds of Ni-Cr-Fe and Ni-Fe-Cr-Mo Alloys Part I : Solidification Cracking in the Fusion Zone)

  • 김희봉;이창희
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.78-89
    • /
    • 1997
  • This study has evaluated the weld metal solidification cracking behavior of several Ni base superalloys (Incoloy 825, Inconel 718 and Inconel 600). Austenitic stainless steels(304, 310S) were also included for comparison. In addition, a possible mechanism of solidification cracking in the fusion zone was suggested based on the extensive microstructural examinations with SEM, EDAX, TEM, SADP and AEM. The solidification cracking resistance of Ni base superalloys was found to be far inferior to that of austenitic stainless steels. The solidification cracking of Incoloy 825 and Inconel 718 was believel to be closely related with the Laves-austenite (Ti rich in 825 and Nb rich in 718) and MC-austenite eutectic phases formed along the grain boundaries during solidification. Cracking in Inconel 600 was always found along the grain boundaries which were enriched with Ti and P. Further, solidifidcation cracking resistance was dependent not only upon the type of love melting phases but also on the amount of the phases along the solidification grain boundaries.

  • PDF

니켈 기반 초합금 클래드 판재의 열간 압연 제조 공정 유한요소해석 (Finite Element Analysis of the Hot Rolled Cladding for the Ni-based Superalloy/steel Corrosion-resistant Alloy (CRA) Plate)

  • 김찬양;배성준;이현석;봉혁종;이광석
    • 소성∙가공
    • /
    • 제33권3호
    • /
    • pp.208-213
    • /
    • 2024
  • Ni-based superalloys have exceptional performance in high-temperature strength, corrosion resistance, etc, and it has been widely used in various applications that require corrosion resistance at high-temperature operations. However, the relatively expensive cost of the Ni-based superalloys is one of the major hurdles. The corrosion-resisted alloy(CRA) clad materials can be a cost-effective solution. In this study, finite element analysis of the hot rolling process for manufacturing of the Alloy 625/API X65 steel CRA clad plates is conducted. The stress-strain curves of the two materials are measured in compressive tests for various temperature and strain rate conditions, using the Gleeble tester. Then, strain hardening behavior is modeled following the modified Johnson-Cook model. Finite element analysis of the hot rolled cladding process is performed using this strain rate and temperature dependent hardening model. Finally, the thickness ratio of the CRA and base material is predicted and compared with experimental values.

Ni5Y 합금상이 형성된 Ni계 산화물 분산강화 아토마이징 분말의 밀링 거동 분석 (Analysis on Milling Behavior of Oxide Dispersion Strengthened Ni-based Atomizing Powder with Ni5Y Intermetallic Phase)

  • 박천웅;변종민;최원준;김영도
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.101-106
    • /
    • 2019
  • Ni-based oxide dispersion strengthened (ODS) alloys have a higher usable temperature and better high-temperature mechanical properties than conventional superalloys. They are therefore being explored for applications in various fields such as those of aerospace and gas turbines. In general, ODS alloys are manufactured from alloy powders by mechanical alloying of element powders. However, our research team produces alloy powders in which the $Ni_5Y$ intermetallic phase is formed by an atomizing process. In this study, mechanical alloying was performed using a planetary mill to analyze the milling behavior of Ni-based oxide dispersions strengthened alloy powder in which the $Ni_5Y$ is the intermetallic phase. As the milling time increased, the $Ni_5Y$ intermetallic phase was refined. These results are confirmed by SEM and EPMA analysis on microstructure. In addition, it is confirmed that as the milling increased, the mechanical properties of Ni-based ODS alloy powder improve due to grain refinement by plastic deformation.