• Title/Summary/Keyword: Ni-YSZ cermet

Search Result 34, Processing Time 0.027 seconds

Optimization of anode and electrolyte microstructure for Solid Oxide Fuel Cells (고체산화물 연료전지 연료극 및 전해질 미세구조 최적화)

  • Noh, Jong Hyeok;Myung, Jae-ha
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.525-530
    • /
    • 2019
  • The performance and stability of solid oxide fuel cells (SOFCs) depend on the microstructure of the electrode and electrolyte. In anode, porosity and pore distribution affect the active site and fuel gas transfer. In an electrolyte, density and thickness determine the ohmic resistance. To optimizing these conditions, using costly method cannot be a suitable research plan for aiming at commercialization. To solve these drawbacks, we made high performance unit cells with low cost and highly efficient ceramic processes. We selected the NiO-YSZ cermet that is a commercial anode material and used facile methods like die pressing and dip coating process. The porosity of anode was controlled by the amount of carbon black (CB) pore former from 10 wt% to 20 wt% and final sintering temperature from $1350^{\circ}C$ to $1450^{\circ}C$. To achieve a dense thin film electrolyte, the thickness and microstructure of electrolyte were controlled by changing the YSZ loading (vol%) of the slurry from 1 vol% to 5 vol. From results, we achieved the 40% porosity that is well known as an optimum value in Ni-YSZ anode, by adding 15wt% of CB and sintering at $1350^{\circ}C$. YSZ electrolyte thickness was controllable from $2{\mu}m$ to $28{\mu}m$ and dense microstructure is formed at 3vol% of YSZ loading via dip coating process. Finally, a unit cell composed of Ni-YSZ anode with 40% porosity, YSZ electrolyte with a $22{\mu}m$ thickness and LSM-YSZ cathode had a maximum power density of $1.426Wcm^{-2}$ at $800^{\circ}C$.

Characterization of Ni/YSZ Anode Coating for Solid Oxide Fuel Cells by Atmospheric Plasma Spray Method (고체산화물 연료전지를 위한 플라즈마 용사코팅 Ni/YSZ 음극 복합체의 특성평가)

  • Park, Soo-Dong;Yoon, Sang-Hoon;Kang, Ki-Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.50-54
    • /
    • 2008
  • In this research, anode for SOFC has been manufactured from two different kinds of feedstock materials through thermal spraying process and the properties of the coatings were characterized and compared. One kind of feedstock was manufactured from spray drying method which includes nano-components of NiO, YSZ (300 nm) and graphite. And the other is manufactured by blending the micron size NiO coated graphite, YSZ and graphite powders as feedstock materials. Microstructure, mechanical properties and electrical conductivity of the coatings as-sprayed, after oxidation and after hydrogen reduction containing nano composite which is prepared from spray-dried powders were evaluated and compared with the same properties of the coatings prepared from blended powder feedstock. The coatings prepared from the spray dried powders has better properties as they provide larger triple phase boundaries for hydrogen oxidation reaction and is expected to have lower polarization loss for SOFC anode applications than that of the coatings prepared from blended feedstock. A maximum electrical conductivity of 651 S/cm at $800^{\circ}C$ was achieved for the coatings from spray dried powders which much more than that of the average value.

Development of Tubular Solid Oxide Fuel Cell (원통형 고체산화물 연료전지 기술개발)

  • Song, Rak-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.373-380
    • /
    • 2001
  • Solid Oxide Fuel Cells (SOFCs) have received considerable attention because of the advantages of high effiiciency, low pollution, cogeneration application and excellent integration with simplified reformer In this paper, we reported development of anode-tubular SOFC by wet process. For making tubular cell, Ni-cermet YSZ anode tube was fabricated using extrusion process, and YSZ electrolyte layer and LSM-YSZ composite, LSM, LSCF cathode layer were coated onto the anode supported tube using slurry dipping process and sintered by co-firing process. By using this tubular cell, we fabricated single cell consisted of the various cathode layers and 4 cell stack with an effective area of $75 cm^2$ per single cell, and evaluated their performance characteristics.

  • PDF

Co-firing of Solid Oxide Fuel Cell Using Pore Former (기공전구체를 이용한 고체전해질 연료전지의 동시소성 연구)

  • 문지웅;이홍림;김구대;김재동;이해원
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.273-279
    • /
    • 1998
  • Unite cell of soid oxide fuel cell (SOFC) that consists of a dense yttria-stabilized zirconia(YSZ) electrolyte a porous nickel-YSZ cermet anode and a porous strontium- doped lanthanum manganate(LSM) cathod was fabricated from using pore former through co-firing technique. Initial sintering shrinkage rates of each layer were identified for fabricating SOFC. Heterogenous sintering was very effective in tailoring shrinkage rate for three layers. The powder tailoring necessary for shrinkage rate matching are as follows ; electrolyte of 60% TZ8YS/ 40% TZ8Y mixture anode of 51wt% NiO/49 wt% (70wt% TZ8YS/30 wt% UT ZrO2) mixture and cathode of 80% LSM/20% UT ZrO2 mixture . The overall sintering shrinkage rate differences of three layers using these compositions were maintained in a few percent.

  • PDF

Study on metal-supported solid oxide fuel cells (신구조 금속지지체형 고체산화물 연료전지)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.129-132
    • /
    • 2007
  • Advanced structure of metal-supported solid oxide fuel cells was devised to overcome sealing problem and mechanical instability in ceramic-supported solid oxide fuel cells. STS430 whose dimensions were 26mm diameter, 1mm thickness and 0.4mm channel width was used as metal support. Thin ceramic layer composed of anode(Ni/YSZ) and electrolyte(YSZ) was joined with STS430 metal support by using a cermet adhesive. $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_{3}$ perovskite oxide was used as cathode material. It was noted that oxygen reduction reaction of cathode governed the overall cell performance from oxygen partial pressure dependance.

  • PDF

Direct Microwave Sintering of Poorly Coupled Ceramics in Electrochemical Devices

  • Amiri, Taghi;Etsell, Thomas H.;Sarkar, Partha
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.390-397
    • /
    • 2022
  • The use of microwaves as the energy source for synthesis and sintering of ceramics offers substantial advantages compared to conventional gas-fired and electric resistance furnaces. Benefits include much shorter processing times and reaching the sintering temperature more quickly, resulting in superior final product quality. Most oxide ceramics poorly interact with microwave irradiation at low temperatures; thus, a more complex setup including a susceptor is needed, which makes the whole process very complicated. This investigation pursued a new approach, which enabled us to use microwave irradiation directly in poorly coupled oxides. In many solid-state electrochemical devices, the support is either metal or can be reduced to metal. Metal powders in the support can act as an internal susceptor and heat the entire cell. Then sufficient interaction of microwave irradiation and ceramic material can occur as the sample temperature increases. This microwave heating and exothermic reaction of oxidation of the support can sinter the ceramic very efficiently without any external susceptor. In this study, yttria stabilized zirconia (YSZ) and a Ni-YSZ cermet support were used as an example. The cermet was used as the support, and a YSZ electrolyte was coated and sintered directly using microwave irradiation without the use of any susceptor. The results were compared to a similar cell prepared using a conventional electric furnace. The leakage test and full cell power measurement results revealed a fully leak-free electrolyte. Scanning electron microscopy and density measurements show that microwave sintered samples have lower open porosity in the electrode support than conventional heat treatment. This technique offers an efficient way to directly use microwave irradiation to sinter thin film ceramics without a susceptor.

Effect of Granulation and Compaction Methods on the Microstructure and Its Related Properties of SOFC Anode (과립형성 및 성형방법에 따른 SOFC 음극의 미세구조 및 특성)

  • Heo, Jang-Won;Lee, Jong-Ho;Hwang, Jin-Ha;Moon, Joo-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • It is well known that the anode substrate of anode-supported type SOFC should have high electrical conductivity and high gas permeability to minimize the polarization loss of the cell performance during operation. In this study, we made anode substrates of SOFC with two different methods, which gave different anode microstructures, especially different pore structures with each other. We performed electrical and microstructural characterization of Ni/YSZ cermet anode via extensive measurements of its electrical conductivity and gas permeability combined with adequate image analysis based on quantitative stereological theory

A Numerical Modeling of the Temperature Dependence on Electrochemical Properties for Solid Oxide Electrolysis Cell(SOEC) (고체 산화물 수전해 시스템(SOEC)에서 전기화학적 특성의 온도 의존성에 대한 수치 모델링)

  • Han, Kyoung Ho;Jung, Jung Yul;Yoon, Do Young
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • In recent days, fuel cell has received attention from the world as an alternative power source to hydrocarbon used in automobile engines. With the industrial advances of fuel cell, There have been a lot of researches actively conducted to find a way of generating hydrogen. Among many hydrogen production methods, Solid Oxide Electrolysis Cell(SOEC) is not only a basic way but also environment-friendly method to produce hydrogen gas. Solid Oxide Electrolysis Cell has lower electrical energy demands and high thermal efficiency since it is possible to operate under high temperature and high pressure conditions. For these reasons, experimental researches as well as studies on numerical modeling for Solid Oxide Electrolysis Cell have been under way. However, studies on numerical modeling are relatively less enough than experimental accomplishments and have limited performance prediction, which mostly is considered as a result from inadequate effects of electrochemical properties by temperature and pressure. In this study, various experimental studies of commercial Membrane Electrode Assembly (MEA) composed of Ni-YSZ (40wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3) was utilized for improving effectiveness of SOEC model. After numerically analyzing effects of electrochemical properties according to operating temperature, causing the largest deviation between experiments and simulation are that Charge Transfer Coefficient (CTC), exchange current density, diffusion coefficient, electrical conductivity in SOEC. Analyzing temperature effect on parameter used in overpotential model is conducted for modeling of SOEC. cross-validation method is adopted for application of various MEA and evaluating feasibility of model. As a result, the study confirm that the numerical model of SOEC based on structured process of effectiveness evaluation makes performance prediction better.

Synthesis and Properties of Y0.08Sr0.92Fe0.3Ti0.7O3 as Ceramic Anode for SOFC (SOFC의 세라믹 음극물질로서 Y0.08Sr0.92Fe0.3Ti0.7O3의 합성 및 물성 평가)

  • Lee, Tae-Hee;Jeon, Sang-Yun;Im, Ha-Ni;Song, Sung-Ju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.161-165
    • /
    • 2021
  • In general, SOFCs mainly use Ni-YSZ cermet, a mixture of Ni and YSZ, as an anode material, which is stable in a high-temperature reducing atmosphere. However, when SOFCs have operated at a high temperature for a long time, the structural change of Ni occurs and it results in the problem of reducing durability and efficiency. Accordingly, a development of a new anode material that can replace existing nickel and exhibits similar performance is in progress. In this study, SrTiO3, which is a perovskite-based mixed conductor and one of the candidate materials, was used. In order to increase the electrical conduction properties, Y0.08Sr0.92Fe0.3Ti0.7O3, doped with 0.08 mol of Y3+ in Sr-site and 0.03 mol of transition metal Fe3+ in Ti-site, was synthesized and its chemical diffusion coefficient and reaction constant were measured. Its electrical conductivity changes were also observed while changing the oxygen partial pressure at a constant temperature. The performance as a candidate electrode material was verified by predicting the defect area through the electrical conductivity pattern according to the oxygen partial pressure.