• Title/Summary/Keyword: Ni-S

Search Result 2,431, Processing Time 0.033 seconds

Developing improvement technology in pre-etching process for the Shadow Mask quality of flat color TV

  • Park, Jong-Moo;Park, Kwang-Ho;Jung, Hyo-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1164-1167
    • /
    • 2003
  • Recently CRT is getting flatted, As change of CRT trend from normal type to Flat type, the material of Shadow Mask was also changed from AK(Aluminum Killed) to Invar(Fe-Ni alloy) materials Until now we have used just AK(Aluminum Killed) for normal type TV(not flat type), but main raw material of shadow mask component was changed. . However recently Invar(Fe-Ni alloy) materials, which has advantage of Low Thermal Expansion and High Strength, has been developed as well as applying in mass production as CRT's trend has become more flat and fine pitch. As main raw material of shadow mask component was changed, conditions of process were changed. One of them, the importance of pre-etching process (assistant process for developing & etching) is improved because there are so many particles in the pre-etching bath because of Ni compounds. Since the solubility of Ni in pre-etching solvent is very low related to Fe's, so the compounds of Ni happen to make particles.(the solubility of Fe is twenty times Ni's) that particles happen to make process troubles and NG productions so to clear the particles we had to established high cost filtering system, but it is useless. As time goes by the quantity of particles (Ni compounds) was increased because of the capability of filtering system was not enough, the particles was produced continuous in bath, and it make quality problems. Hence we tried to develop the new pre-etching solution to remove the particles (Ni compounds) and to cost down the filtering system's running cost. But in improving the solution we discovered the new pre-etching solution made the PR developing better. In former solution there were three kinds of chemistry (COOH)2 , H2O2 , H2S04 .first the function of (COOH)2 is drilling the surface of Invar, during this mechanism Ni compounds occurred. Second the function of H202 is removing the PR fringe (half UV exposure zone on PR(PVA)), Third the function of H2S04 is the catalysis of (COOH)2 In those, (COOH)2 was the main reason to make the Ni compounds. So to improve the solutions we had to change (COOH)2 to the other material. the chemistry we improved was a complex chemistry based on H2S04 . after using this chemistry the particles problem was disappeared and there was another advantage cut down the PR fringe. The New solution made the function of H202 better so the PR developing improved. To be direct the catalyst of the new solution helped the H202. anyway First thing after change the solution the quality of shadow Mask for flat color TV was improved & the yield also improved. But the more important thing is how to control the new solution. So we accepted the new concept which was the degree of freshness. The degree of freshness is based on non-reacted solution which was 100% ( the degree of freshness) and calculated the melted Ni quantity as time goes by. So we made the gauging liner plot. In conclusion, many companies tried to make fine pitched Shadow Mask ,generally to make quality jump up it needed a lot of cost & persons .in this case the shift of core material made it possible.

  • PDF

Analysis of Dopant Dependency and Improvement of Thermal stability for Nano CMOS Technology (Nano-CMOS에서 NiSi의 Dopant 의존성 및 열 안정성 개선)

  • 배미숙;오순영;지희환;윤장근;황빈봉;박영호;박성형;이희덕
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.667-670
    • /
    • 2003
  • Ni-silicide has low thermal stabiliy. This point is obstacle to apply NiSi to devices. So In this paper, we have studied for obtain thermal stability and analysis of dopant dependency of NiSi. And then we applied Ni-silicide to devices. To improvement of thermal stability, we deposit Ni70/Co10/Ni30/TiN100 to sample. Co midlayer is enhanced thermal stability of NiSi. Co/Ni/TiN, this structure show very difference between n-poly and p-poly in sheet resistance. But Ni/Co/Ni/TiN, structure show less difference. Also junction leakage is good.

  • PDF

Thermal Behavior of NiFe2O4 for Hydrogen Generation (NiFe2O4를 이용한 열화학 사이클 H2 제조)

  • Han, S.B.;Kang, T.B.;Joo, O.S.;Jung, K.D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2003
  • The thermal behavior of $NiFe_2O_4$ prepared by a solid-state reaction was investigated for $H_2$ generation by the thermochemical cycle. The reduction of $NiFe_2O_4$ started from $800^{\circ}C$, and the weight loss was 0.2-0.3 wt% up to $1000^{\circ}C$. In the $H_2O$ decomposition reaction, $H_2$ was generated by oxidation of reduced $NiFe_2O_4$. The crystal structure of $NiFe_2O_4$ maintained during the redox reaction of 5 cycles. From this observation, the lattice oxygen in $NiFe_2O_4$ is released without the structural change during the thermal reduction and oxygen deficient $NiFe_2O_4$ can be restored to the spinel structure of $NiFe_2O_4$.

Influences of NiO Precursors on Microstructures and Conductivities of Ni/YSZ Anodes in SOFCs (NiO 전구체가 고체산화물 연료전지 Ni/YSZ 음극의 미세구조와 전기전도도에 미치는 영향)

  • Jeong, Youn-Ji;Lee, Hai-Won;Han, Kyoung-R.;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.402-407
    • /
    • 2006
  • NiO/YSZ(70 wt%NiO) composite powders were prepared by ball-milling of 8YSZ and NiO precursors, dried and then followed by calcination. The approach was to combine acidic $Ni(NO_3)_2{\cdot}6H_2O$ and basic $2NiCO_3{\cdot}3Ni(OH)_2{\cdot}4H_2O$ via acid-base reaction as a mixed NiO precursor. Their effects were studied in the aspects of DSC, microstructure, porosity, and electrical conductivity. Ni/YSZ composite of 1N9C (1 mole NiO from the nitrate and 9 moles of NiO from the carbonate) was prepared by consolidation at $1400^{\circ}C$ for 3 h, and then followed by reduction at $1000^{\circ}C$ for 3 h under flowing of 6% $H_2/N_2$. It showed a homogeneous microstructure with ${\sim}20%$ porosity and 1880 S/cm at $1000^{\circ}C$.

Colossal Magnetoresistance in Chalcogenide Spinels $Ni_xFe_{1-x}Cr_2S_4(X = 0.05, 0.1, 0.2)$ (Spinel 유화물 $Ni_xFe_{1-x}Cr_2S_4(X = 0.05, 0.1, 0.2)$의 초거대자기저항(CMR)현상에 관한 연구)

  • 박재윤
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2001
  • Recently many studies on manganese oxides Ln$_{1-x}$A$_{x}$MnO$_3$(Ln=La, Pr, Nd lanthannide; A=Ca, Sr, Ba, Pb +2 ions) reported CMR properties. CMR have been also found in chalcogenide spinels. We have investigated that Ni ion substitutions for Fe ion have effects on CMR properties in chacogenide spinels Ni$_{x}$Fe$_{1-x}$Cr$_2$S$_4$. It was found that with increasing Ni concentration Jahn-Teller distortion was strengthened and Curie temperature T$_{c}$ was increased. CMR properties could be explained with Jahnl-Teller effect, half-metallic electronic structure, and the alignment of magnetic domain due to the strong magnetic field, which is different in that double exchange interactions dominate CMR properties in manganese oxides.

  • PDF

Effect of ECR-Ion Milling on Exchange Biasing in NiO/NiFe Bilayers

  • D.G. Hwang;Lee, S. S.;Lee, K. H.;Lee, K. B.;Park, D. H.;Lee, H. S.
    • Journal of Magnetics
    • /
    • v.5 no.1
    • /
    • pp.23-25
    • /
    • 2000
  • We have investigated the effects of Ar and$O_2$-ion milling on the exchange coupling field ($H_{ex}$) and coercive field ($H_c$) at the interfaces between substrates and NiO/NiFe films, to understand the exchange biasing mechanism. The $O_2$-ion milling was successfully performed by means of the electron cyclotron resonance (ECR) process. We found that the local roughness gradient of the NiO surface increased by $O_2$-ion milling. The ratio of $H_{ex}/H_c$ increased from 0.87 to 1.77, whereas $H_c$ decreased by almost a half as a results of the ion milling. The decrease in $H_c$could be interpreted as due to the refinement of magnetic domain size, which arose from the increase of the local roughness gradient of the NiO surface. The decrease in low $H_c$, and increase in $H_{ex}$ in NiO spin valves by ECR-ion milling are in the right direction far use in magnetoresistance (MR) heads.

  • PDF

Effects of crystallization reagent and pH on the sulfide crystallization of Cu and Ni in fluidized bed reactor (유동층 반응기를 이용한 구리와 니켈의 황화물 결정화에 결정화 시약 및 pH가 미치는 영향)

  • Jeong, Eunhoo;Shim, Soojin;Yun, Seong Taek;Hong, Seok Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2014
  • Wastewater containing heavy metals such as copper (Cu) and nickel (Ni) is harmful to humans and the environment due to its high toxicity. Crystallization in a fluidized bed reactor (FBR) has recently received significant attention for heavy metal removal and recovery. It is necessary to find optimum reaction conditions to enhance crystallization efficacy. In this study, the effects of crystallization reagent and pH were investigated to maximize crystallization efficacy of Cu-S and Ni-S in a FBR. CaS and $Na_2S{\cdot}9H_2O$ were used as crystallization reagent, and pH were varied in the range of 1 to 7. Additionally, each optimum crystallization condition for Cu and Ni were sequentially employed in two FBRs for their selective removal from the mixture of Cu and Ni. As major results, the crystallization of Cu was most effective in the range of pH 1-2 for both CaS and $Na_2S{\cdot}9H_2O$ reagents. At pH 1, Cu was completely removed within five minutes. Ni showed a superior reactivity with S in $Na_2S{\cdot}9H_2O$ compared to that in CaS at pH 7. When applying each optimum crystallization condition sequentially, only Cu was firstly crystallized at pH 1 with CaS, and then, in the second FBR, the residual Ni was completely removed at pH 7 with $Na_2S{\cdot}9H_2O$. Each crystal recovered from two different FBRs was mainly composed of CuxSy and NiS, respectively. Our results revealed that Cu and Ni can be selectively recovered as reusable resources from the mixture by controlling pH and choosing crystallization reagent accordingly.