• 제목/요약/키워드: Ni-Mh battery

검색결과 91건 처리시간 0.016초

연료전지 기반 에너지저장 시스템의 환경 전과정평가 및 에너지 효율성 분석 (Life Cycle Assessment (LCA) and Energy Efficiency Analysis of Fuel Cell Based Energy Storage System (ESS))

  • 김형석;홍석진;허탁
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.156-165
    • /
    • 2017
  • This study quantitatively assessed the environmental impacts of fuel cell (FC) systems by performing life cycle assessment (LCA) and analyzed their energy efficiencies based on energy return on investment (EROI) and electrical energy stored on investment (ESOI). Molten carbonate fuel cell (MCFC) system and polymer electrolyte membrane fuel cell (PEMFC) system were selected as the fuel cell systems. Five different paths to produce hydrogen ($H_2$) as fuel such as natural gas steam reforming (NGSR), centralized naptha SR (NSR(C)), NSR station (NSR(S)), liquified petroleum gas SR (LPGSR), water electrolysis (WE) were each applied to the FCs. The environmental impacts and the energy efficiencies of the FCs were compared with rechargeable batteries such as $LiFePO_4$ (LFP) and Nickel-metal hydride (Ni-MH). The LCA results show that MCFC_NSR(C) and PEMFC_NSR(C) have the lowest global warming potential (GWP) with 6.23E-02 kg $CO_2$ eq./MJ electricity and 6.84E-02 kg $CO_2$ eq./MJ electricity, respectively. For the impact category of abiotic resource depletion potential (ADP), MCFC_NGSR(S) and PEMFC_NGSR(S) show the lowest impacts of 7.42E-01 g Sb eq./MJ electricity and 7.19E-01 g Sb eq./MJ electricity, respectively. And, the energy efficiencies of the FCs are higher than those of the rechargeable batteries except for the case of hydrogen produced by WE.