• 제목/요약/키워드: Ni-Fe/YSZ anodes

검색결과 2건 처리시간 0.015초

Ni-Fe/YSZ 코어-쉘 구조 연료극을 사용한 다전지식 고체산화물 연료전지의 전기화학적 특성 (Electrochemical Properties of Segmented-in-series SOFC Using Ni-Fe/YSZ Core-shell Anode)

  • 안용태;지미정;황해진;이민진;홍선기;강영진;최병현
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.357-361
    • /
    • 2014
  • An Ni-Fe/YSZ core-shell structured anode for uniform microstructure and catalytic activity was synthesized. Flat tubular segmented-in-series solid oxide fuel cell-stacks were prepared by decalcomania method using synthesized anode powder. The Ni-Fe/YSZ core-shell anode exhibited better electrical conductivity than a commercially available Ni-YSZ cermet anode. Also power output increased by 1.3 times with a higher open circuit voltage. These results can be attributed to the uniformly distributed Ni particles in the YSZ framework. The impedance spectra of a Ni-Fe/YSZ core-shell anode showed comparable reduced ohmic resistance similar to those of the commercially available Ni-YSZ cermet anodes.

La(Sr)Fe(Co)O3-δ 침지법을 이용한 양극 지지형 SOFC 제조 및 출력 특성 (Characterization and Fabrication of La(Sr)Fe(Co)O3-δ Infiltrated Cathode Support-Type Solid Oxide Fuel Cells)

  • 황국진;김민규;김한빛;신태호
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.501-506
    • /
    • 2019
  • To overcome the limitations of the conventional Ni anode-supported SOFCs, various types of ceramic anodes have been studied. However, these ceramic anodes are difficult to commercialize because of their low cell performances and difficulty in manufacturing anode-support typed SOFCs. Therefore, in this study, to use these ceramic anodes and take advantage of anode-supported SOFC, which can minimize ohmic loss from the thin electrolyte, we fabricated cathode support-typed SOFC. The cathode-support of LSCF-YSZ was prepared by the acid treatment of conventional Ni-YSZ (Yttria-stabilized Zirconia) anode-support, followed by the infiltration of LSCF to YSZ scaffold. The composite of $La(Sr)Ti(Ni)O_3$ and $Ce(Mn,Fe)O_2$ was used as the ceramic anode. The fabricated cathode-supported button cell showed a relatively low power density of $0.207Wcm^{-2}$ at $850^{\circ}C$; however, it is expected to show better performance through the optimization of the infiltration rate and thickness of LSCF-YSZ cathode-support layer.