• Title/Summary/Keyword: Ni-Cu alloy

Search Result 312, Processing Time 0.03 seconds

Effect of Phosphorus Addition on Microstructure and Mechanical Properties of Sintered Low Alloy Steel (저합금강 소결체의 미세조직 및 기계적 특성에 미치는 인(P) 첨가의 영향)

  • Kim, Yoo-Young;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2020
  • Phosphorus is an element that plays many important roles in powder metallurgy as an alloy element. The purpose of this study is to investigate the influence of phosphorus addition on the microstructures and mechanical properties of sintered low-alloy steel. The sintered low-alloy steels Fe-0.6%C-3.89%Ni-1.95%Cu-1.40%Mo-xP (x=0, 0.05, 0.10, 0.15, 0.20%) were manufactured by compacting at 700 MPa, sintering in H2-N2 at 1260 ℃, rapid cooling, and low-temperature tempering in Ar at 160 ℃. The microstructure, pore, density, hardness, and transverse rupture strength (TRS) of the sintered low-alloy steels were evaluated. The hardness increased as the phosphorus content increased, whereas the density and TRS showed maximum values when the content of P was 0.05%. Based on microstructure observation, the phase of the microstructure changed from bainite to martensite as the content of phosphorus is increased. Hence, the most appropriate addition of phosphorus in this study was 0.05%.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Effect of Interlayers on the Bending Strength of Silicon Nitride/Staineless Steel Joints (중간재가 질화규소/스테인레스 스틸 접합체의 굽힘강도에 미치는 영향)

  • 박상환;최영화;김태우
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.251-258
    • /
    • 1996
  • The reactions between an active metal brazing alloy and interlayers together with the effects of interlayer type on the interfacial microstructure change were investiaged for silicon nitride/stainless steel joint. The bending strengths were measured for joints with Mo, Cu, Ni interlayer type of different thicknesses. It was found that the interlayer with a low yield strength value is effective to improve the bending strength of the Si3N4/stainless steel joint. The maximum joint strength obtained at room temperature for a laminated Cu/Mo interlayer was about 460 MPa. The combined use of Mo and thin Cu layer was found to be effective in enhancing the bending strength for the Si3N4/S.S.316 joint.

  • PDF

Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals (은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징)

  • Huh, D.;Kim, D.H.;Chun, B.S.
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

Plastic deformation behavior of BMG/crystalline composites in the supercooled liquid region during compression (BMG/결정질 복합재의 과냉각 액상구역에서 압축 변형 거동)

  • Park, E.S.;Lee, J.H.;Kim, S.H.;Huh, M.Y.;Kim, H.J.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.118-121
    • /
    • 2007
  • Bulk metallic glass (BMG)/crystalline composites comprising a copper based BMG alloy and crystalline nickel were produced by means of eloctroless plating of nickel on $Cu_{54}Zr_{22}Ti_{18}Ni_6$ BMG powder and subsequent consolidation using spark plasma sintering. The plastic deformation behavior of BMG/crystalline composites was examined by uniaxial compression test at various temperatures in the supercooled liquid region (SLR) of the BMG alloy. The evolution of strain states during uniaxial compression was tackled by microstructure observations. Deformation temperature played an important role in the deformation behavior of BMG/crystalline composites, which was attributed to a strong temperature dependence of the flow stress of the BMG alloy in the SLR. BMG/crystalline composites deformed homogenously in the temperature range where the flow stress of the BMG alloy was close to that of crystalline nickel. In contrast, inhomogeneous deformation was observed in the temperature range where the flow stress of the BMG alloy largely differs from that of crystalline nickel.

  • PDF

Micro Forming of Bulk Metallic Glass using the Deformation Behavior in the Supercooled Liquid Region (과냉각 액체 영역에서의 변형거동을 이용한 벌크 비정질 합금의 미세성형 기술 개발)

  • 홍경태;옥명렬;서진유
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.93-96
    • /
    • 2003
  • Recently, various bulk metallic glasses (BMG's) haying good mechanical and chemical properties were developed. BMG's can easily be deformed in the supercooled liquid region, via viscous flow mechanism. In our previous work, we evaluated the deformation behavior and some other basic properties of Z $r_{41.2}$ $Ti_{13.8}$C $u_{12.5}$N $i_{10}$B $e_{22.5}$ alloy. In this study, we investigated the micro forming of Z $r_{41.2}$ $Ti_{13.8}$C $u_{12.5}$N $i_{10}$B $e_{22.5}$ alloy. The process condition was chosen based on the viscosity data from TMA, and superalloy and Si wafer with micro patterns on the surface were used as forming die. The alloy showed good replication of the patterns. However, some stripe patterns, resembling scratches, appeared on the deformed alloy surface. These scratches can be reduced or eliminated by polishing before forming.ing.ore forming.ing.

  • PDF

The correlation between Spin Polarized Tunneling and Magnetic Moment in Co-Mn and Co-Fe Alloy Films (Co1-xFex와 Co1-xMnx 강자성 전이 합금 박막의 자기 모멘트와 터널 접합에 의한 스핀 편극치의 상관관계 연구)

  • Choi, Deung-Jang;Jang, Eun-Young;Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.194-197
    • /
    • 2007
  • Understanding the spin polarization (P) has been an ongoing research challenge. The $Co_{1-x}Mn_x$ (x=0.27, 1) and $Co_{1-x}Fe_x$ (x=0, 0.5, 1) films were prepared using UHV-MBE system. For these films, the magnetic properties and spin polarization were investigated using SQUID and Meservey-Tedrow technique, respectively. Although measured P is uncorrelated to the bulk magnetic moment (M) in Co-Fe and Ni-Fe alloy films, it correlates with M in some alloys such as Co-Mn and Ni-Cu. The results can be understood by the tunneling currents made up of the hybridized sp-d electrons near the Fermi-energy level. Our work shows the feasibility to tailor new materials with large P values.