• Title/Summary/Keyword: Ni alloys

Search Result 701, Processing Time 0.022 seconds

A Study on the Mechanical Properties of Ag-X(X=Cu,Ni,C) Alloys Prepared by the Vacuum-deposition Technique (진공증착법으로 제작한 Ag-X(X=Cu,Ni,C) 합금의 기계적 성질에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.243-250
    • /
    • 2011
  • When alloys are vacuum-deposited on cooled substrates, super-rapidly cooled alloy films in the unequilibrium state can be obtained. As an application of this method, Ag-Cu, Ag-Ni and Ag-C alloys were successfully produced, and their mechanical properties with tempering temperature were investigated. The following results were obtained : (1) In case of Ag-Cu alloys, the solid solution was hardened by tempering at $150^{\circ}C$. The hardening is considered to occur when the solid solution begins to decompose into ${\alpha}$ and ${\beta}$ phases. The Knoop hardness number of a 40 at.%Ag-Cu alloy film deposited on a cooled glass substrate was 390 $kg/mm^2$. The as-deposited films were generally very hard but fractured under stresses below their elastic limits. (2) In case of Ag-Ni and Ag-C alloys, after the tempering of 4 at.%Ni-Ag alloy at $400^{\circ}C$ and of 1 and 2 at.%C-Ag alloys at $200^{\circ}C$, they were hardened by the precipitation of fine nickel and carbon particles. The linear relationship between proof stress vs. $(grain\;diameter)^{-l/2}$ for bulk silver polycrystals can be applied to vacuum-deposited films up to about 0.1 ${\mu}m$ grain diameter, but the proof stress of ultra-fine grained silver with grain diameters of less than 0.1 ${\mu}m$ was smaller than the value expected from the Petch's relation.

Electrochemical properties of $AB_5$-type Hydrogen alloys upon addition of Zr, Ti and V ($AB_5$계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기화학적특성)

  • Kim, D.H.;Cho, S.W.;Jung, S.R.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • There are two types of metal hydride electrodes as a negative electrode in a Ni-MH battery, $AB_2$ Zr-based Laves phases and $AB_5$ LM(La-rich mischmetal)-based alloys. The $AB_5$ alloy electrodes have characteristic properties such as a large discharge capacity per volume, easiness in activation, long cycle life and a low cost of alloy. However they have a relatively small discharge capacity per weight. The $AB_2$alloy electrodes have a much higher discharge capacity per weight than $AB_5$ alloy electrodes, however they have some disadvantages of poor activation behavior and cycle life. Therefore, in order to improve the discharge capacity of the $AB_5$ alloy electrode the Zr, Ti and V which are the alloying elements of the $AB_2$ alloys were added to the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy which was chosen as a $AB_5$ alloy with a high capacity. The addition of Zr, Ti and V to $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy improved the activation to be completed in two cycles. The discharge capacities of Zr 0.02, Ti 0.02 and V 0.1 alloys in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) were respectively 346, 348 and 366 mAh/g alloy. The alloy electrodes, Zr 0.02, Ti 0.05 and V 0.1 in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V), have shown good cycle property after 200 cycles. The rate capability of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloy electrodes were very good until 0.6 C rate and the alloys, Zr 0.02, Ti 0.05 and V 0.1, have shown the best result as 92 % at 2.4 C rate. The charge retention property of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloys was not good and the alloys with M content from 0.02 to 0.05 showed better charge retention properties.

Crystallization Behavior of Al-Ni-Y Amorphous Alloys

  • Na, Min Young;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.127-131
    • /
    • 2013
  • The crystallization behavior in the $Al_{87}Ni_3Y_{10}$ and $Al_{88}Ni_3Y_9$amorphous alloys has been investigated. As-quenched $Al_{87}Ni_3Y_{10}$ amorphous phase decomposes by simultaneous formation of Al and intermetallic phase at the first crystallization step, while as-quenched $Al_{88}Ni_3Y_9$ amorphous phase decomposes by forming Al nanocrystals in the amorphous matrix. The density of Al nanocrystals is extremely high and the size distribution is homogeneous. Such a microstructure can result from rapid explosion of the nucleation event in the amorphous matrix or growth of the preexisting nuclei embedded in the as-quenched amorphous matrix. The final equilibrium crystalline phases and their distribution at 873 K are exactly same in both $Al_{87}Ni_3Y_{10}$ and $Al_{88}Ni_3Y_9$ alloys.

Phase Transformation and Reversible Shape Memory Effect of Ti-Ni-Cu Alloys (Ti-Ni-Cu 합금의 상변태 및 가역형상기억효과)

  • Hong, S.W.;Lee, O.Y.;Kim, D.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.3
    • /
    • pp.149-156
    • /
    • 1992
  • Transformation behavior and reversible shape memory effct of Ti-Ni-Cu alloys with various Cu content has been investigated by means of electrical resistivity measurement, differential scanning calorimetry. X-ray diffraction and strain gage sensor. The transformation sequence in Ti-Ni-Cu alloys substituted by Cu for Ni up to 5at.% occurs to $B2{\leftrightarrow}B19^{\prime}$ and it proceeds in two stages by addition of 10 at.%Cu. i.e. $B2{\leftrightarrow}B19{\leftrightarrow}B19^{\prime}$. But the content of Cu increases up to 20at.%, it has been transformed in one stage ; $B2{\leftrightarrow}B19$. The shape change of Ti-40Ni-10Cu alloy which was constrain aged in circular form bended in $B2{\leftrightarrow}B19$ transformation but it spreaded out in $B19{\leftrightarrow}B19^{\prime}$ transformation. The amount of reversible shape change (${\Delta}{\varepsilon}$) of Ti-47Ni-3Cu alloy constrain aged at $400^{\circ}C$ after solution treatment has a maximum value of about $5.6{\times}10^{-3}$, but that of cold rolled and constrain aged specimens exhibits a little value independent of Cu concentrations.

  • PDF

Development of Cu-Ni Binary Alloys for Room Temperature Compensation of Pt/Pd Thermocouple (Pt/Pd 열전대의 실온보상을 위한 Cu-Ni 합금 개발)

  • Kim, Yong-Gyoo;Kang, Kee-Hoon;Gam, Kee-Sool;Lee, Young-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.405-410
    • /
    • 2004
  • Compensation wires for Pt/Pd thermocouple was manufactured using Cu/Ni alloys. Their thermoelectric voltage has been tested from room temperature to about $150^{\circ}C$. Alloys of $Cu_{95.5}Ni_{4.5}$ and $Cu_{89.5}Ni_{10.5}$ introduced only small emf differences to Pt/Pd thermocouples, indicating a real possibility of industrial use. Above $1000^{\circ}C$, the temperature difference was expected to he small as ${\pm}0.5^{\circ}C$, and the difference would be minimized by adjusting the Ni content with a small amount.

Crystal Structure of $\textrm{ZrV}_{x}\textrm{Mn}_{1-x-y}\textrm{Ni}_{1+y}$ Laves Phase Alloys for MH Battery Application (MH전지용 $\textrm{ZrV}_{x}\textrm{Mn}_{1-x-y}\textrm{Ni}_{1+y}$ Laves합금의 결정구조)

  • Kim, Won-Baek;Seo, Chang-Yeol;Choe, Guk-Seon;Kim, In-Gon
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.234-243
    • /
    • 1997
  • The crystal structure of arc melted $ZrV_{x}Mn_{1-x}Ni_{1.0},\;ZrV_{x}Mn_{0.8-x}Ni_{1.2},\;ZrV_{x}Mn_{0.6-x}Ni_{1.4}$ alloys which are known to have AB2 type Laves structure was investigated. They had mixed phases of C14 and C15. The radius ratio ($r_{A}/r_{B}$) of atoms in A site to that of B site was found to be an important parameter in explaining the omposition dependence of the crystal structure The C15 structure showed a linear increase with the ratio in as-cast conditions. However, the annealed alloys revealed a definite ratio at which the stability of both phases are divided distinctly. The composition of the alloys could be closely controlled by maintaining the argon pressure in the chamber over 1 arm during arc melting. In contrast, the alloy ingot melted in VIM showed a significant loss of hln.

  • PDF

Thermodynamic Modeling of Ni-Cr-Nb-C System for Analysis of Fracture Behavior of Heat-resistant Casting Alloys (IN-657) (내열 주조 합금 (IN-657) 파괴 거동 해석을 위한 Ni-Cr-Nb-C 시스템 열역학 모델링)

  • Kim, DongEung
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.445-453
    • /
    • 2021
  • Computational thermodynamics for various alloy systems is well known as the CALPHAD technique. Gibbs energy model parameters for each phase are obtained from experimentally measured thermodynamic properties and are mainly used to predict areas not experimentally measured and to analyze experimental results thermodynamically. In this study, the thermodynamic modeling of the Ni-Cr-Nb-C quaternary system is conducted for a thermodynamic analysis of the phenomena by which heat-resistant cast alloys (IN-657) are destroyed in certain areas after long-term use. The stable phases in the system according to the Cr content, phase fraction depending on the temperature, and long-range ordering parameters for the Ni2Cr phase are calculated and compared to results obtained experimentally. The calculated thermodynamic properties suitably explain the experimentally reported fracture temperature range and the results of stable phases formed in the fractured areas. Thermodynamic modeling through the CALPHD method is expected to be useful for analyzing and predicting the thermodynamic behaviors of various cast alloys.

Development and Application of Porous Superelastic TiNi Materials for Medical Implants

  • Gjunter, V.E.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1998.10b
    • /
    • pp.7-7
    • /
    • 1998
  • Research activities of Russian Medical Engineering Center and Institute of Medical Materials of Shape Memory Alloys and Implants are presented as follows: ${\bullet}$ The direction of elaboration of porous shape memory alloys for medicine. ${\bullet}$ Medical and technical requirements and physical and mechanical criteria of porous shape memory implants elaboration. ${\bullet}$ Basic laws of heat-, stress- and strain-induced changes of mechanical properties, shape memory effect and superelasticity in porous TiNi-based alloys. ${\bullet}$ Methods of regulation of shape memory effect parameters in porous alloys and methods for controlling the regulation-induced changes of physical and mechanical properties. ${\bullet}$ Original technologies of elaboration of porous alloys In various fields of medicine. ${\bullet}$ Arrangement of serial production of shape memory porous implants and examples of their medical use.

  • PDF

Processing and Mechanical Properties of Ni-Cr and Ni-Cr-Al Foams by Pack-Cementation

  • Dunand, David;Choe, Hui-Man
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.19.1-19.1
    • /
    • 2009
  • Open-cell Ni-Cr and Ni-Cr-Al(with gamma/gamma prime microstructure typical of Bi-base super alloys) foams are manufactured by pack-cementation at $1000{\boxplus}$degrees C, followed by homogenization at $1200{\boxplus}C$. The resulting alloyed foams retain the low relative densities (less than 3.5 wt.%). The oxidation behavior of Ni-Cr foams turns out to be identical to that of bulk Ni-Cr alloys, after taking into account the foam's higher surface area. The room-temperature compressive behavior of the Ni-Cr and Ni-Cr-Al is compared to model predictions. Additionally, the foam creep behavior, measured between 680 and $825{\boxplus}C$ in the stress range of 0.1-0.3 MPa, compared to two analytical models, namely strut compression and strut bending as high-temperature deformation modes.

  • PDF

A Study of the Characteristics of Cast Ni-Ti Alloy for Biomaterial with Compositional Change (정밀 주조한 생체용 Ni-Ti합금의 조성변화에 따른 특성 연구)

  • 권오원;김교한
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.283-290
    • /
    • 1993
  • In thls study, the effects of the composltional change of cast Ni-Ti alloys on its characteristics including mechanical properties, phase transformation temperature, and ion releasing rate were investigated. brittle:behavior was shown in the stress-strain curve of the alloy containing low Ti content (Ni-44.0%Ti). By increasing the Ti content, the trend in stress-strain curves changed from that of superelasticity to that of shape memory effect(Ni-44.4%Ti, Ni-45.1%Ti, Ni-45, 5%Ti). Phase transformation temperature ($A_f, {\;}M_5$ point) increased with increasing the Ti content. lon releasing rate of four types of Mi-Ti alloys was very low compared to that of the dental commerical Ni-Cr alloy.

  • PDF