• Title/Summary/Keyword: Ni addition

Search Result 1,055, Processing Time 0.026 seconds

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

Aquatic and Riparian Flora of the Nakdonggang River Tributary (Sangju: Byeongseong-cheon, Buk-cheon, Oeseo-cheon) (낙동강 지류의 수생 및 수변 식물상(상주: 병성천, 북천, 외서천))

  • Hwang, Yong;Hong, Jeong-Ki
    • Korean Journal of Plant Resources
    • /
    • v.33 no.5
    • /
    • pp.516-535
    • /
    • 2020
  • This study was conducted to provide information on local resource plants by identifying aquatic and Riparian flora. We investigated the aquatic and riparian floras in 3 streams(Byeongseong-cheon, Buk-cheon, Oeseo-cheon) from February to October 2019. 321 taxa (i.e. 300 species, 5 subspecies, 15 varieties 1 Cultivars from 203 genera of 78 families) of the vascular plants were found in the survey area. Byeongseong-cheon is 133 taxa, Buk-cheon is 233 taxa and Oeseo-cheon is 132 taxa. Among 321 taxa, we found 5 endemic species, 3 red list plants, and However, endangered plants were not found in 3 streams. Aquatic and Riparian plant 138 taxa(i.e. Aquatic plant 20 taxa, Riparian plant 118 taxa). Life forms is annual plant 43 taxa, biennial plant 24 taxa, perennial plant 71 taxa. Aquatic plant growth forms emergent hydrophyte 13 taxa, floating leaved hydrophyte 1 taxa, submerged hydrophyte 6 taxa. The number of floristic regional indicator plants was 15 (i.e. 1 species of IV degree, 3 taxa of III degree, 5 taxa of II degree, and 6 taxa of I degree). Approved foreign export plants 31 taxa. In addition, 52 naturalized plants were identified, and the percentage of Naturalized Index (NI) and Urbanization Index (UI) were 16.1%, and 16.2%, respectively. Vascular plant usability and reclassification result is Edible 213 species (66%), Medicinal 244 species (76%), Flavor 10 species (3%), Industrial 136 species (42%), Ornamental 137 species (36%), Restoration 117 species (36%), Compost 155 species (48%), Unknown 7 species (5%). We hope that our results provide reference data to set up strategy of resources plants, conservation of biodiversity in the 3 streams and Sangju-si areas.

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

A Study on Heavy Metal Concentrations of Oxidized Hair Coloring Products in Korea Market (한국에서 유통 중인 산화형 염모제의 중금속 농도에 관한 연구)

  • Choi, Chae Man;Hong, Mi Sun;Lee, Yun Jung;Kim, Hwa Soon;Kim, Hyun Jung;Kim, Jung Hun;Chae, Young Zoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.3
    • /
    • pp.241-249
    • /
    • 2013
  • This study was aimed to provide the fundamental data about oxidized hair color products. For this reason, we collected 125 oxidized hair color products, which were distributed in domestic market from January to October, 2012, and measured the heavy metal concentrations of lead, arsenic, cadmium, chromium, manganese, nickel, copper in the samples. Results were compared by domestic, foreign, henna, type and color. The average metal concentrations were as follows; 0.211 ${\mu}g/g$ for lead, 0.008 ${\mu}g/g$ for cadmium, 0.051 ${\mu}g/g$ for arsenic, 0.954 ${\mu}g/g$ for chromium, 6.250 ${\mu}g/g$ for manganese, 0.591 ${\mu}g/g$ for nickel and 0.544 ${\mu}g/g$ for copper. In case of lead and arsenic, the concentrations were much less than the regulated amount (20 ${\mu}g/g$ and 10 ${\mu}g/g$, respectively) suggested by MFDS (Ministry of Food and Drug Safety). In henna (p < 0.05), the concentrations were significantly higher than those of other domestic and foreign oxidized hair color products as follows; 1.264 ${\mu}g/g$ for lead, 0.267 ${\mu}g/g$ for arsenic, 0.025 ${\mu}g/g$ for cadmium, 4.055 ${\mu}g/g$ for chromium, 72.044 ${\mu}g/g$ for manganese, 3.076 ${\mu}g/g$ for nickel and 4.640 ${\mu}g/g$ for copper. Statistically, it showed that the heavy metal concentrations were quite different for the different types of hair color products. The cream and liquid type products had the highest average concentration in chromium (0.708 ${\mu}g/g$, 0.478 ${\mu}g/g$, respectively). On the other hand, powder type products showed the highest concentration in manganese (60.041 ${\mu}g/g$). In addition, the concentrations of heavy metals and the color of products are not quite correlated. It was shown that average concentrations of lead and chromium were higher for yellow, chromium for red and pink, manganese for brown and black, and nickel for green.

Optimization of Cookie Preparation by Addition of Yam Powder (마분말 첨가 쿠키 제조조건 최적화)

  • Joo, Na-Mi;Lee, Sun-Mee;Jung, Hee-Sun;Park, Sang-Hyun;Song, Yun-Hee;Shin, Ji-Hun;Jung, Hyeon-A
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • This study was conducted to develop an optimal composite recipe for a cookie including yam powder that would be attractive to all age groups. Wheat flour was partially substituted by yam powder to reduce the content of wheat flour. This study has produced the sensory optimal composite recipe by making cookies, respectively with each 5 level of yam powder $(X_1)$, Sugar$(X_2)$, butter$(X_3)$, by C.C.D (Central Composite Design) and conducting sensory evaluation and instrumental analysis by means of RSM (Response Surface Methodology). Sensory items showed very significant values in color, softness, overall quality (p<0.01), flavor (p<0.05) and those of instrumental analysis showed significant values in lightness, redness (p<0.05), spread ratio, hardness (p<0.01). Also sensory optimal ratio of yam cookie was calculated at yam powder 37.35 g, sugar 50.75 g, butter 78.40 g and it was revealed that the factors of influencing yam cookie aptitude were in older of yam powder, butter, sugar.