• Title/Summary/Keyword: Ni Catalyst

Search Result 509, Processing Time 0.027 seconds

Partial Oxidation of Methane Over Ceria-promoted Catalysts Derived from Ni-substituted Hydrotalcite (세리아가 첨가된 니켈 치환 하이드로탈사이트로부터 유도된 촉매에 의한 메탄의 부분산화)

  • Lee, Seung-Hwan;Kim, Mi-So;Kwak, Jung-Hun;Lim, Tae-Hoon;Nam, Suk-Woo;Hong, Seong-Ahn;Yoon, Ki-June
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.39-44
    • /
    • 2008
  • Partial oxidation of methane was carried out by ceria-promoted Ni-substituted hydrotalcite-derived catalysts ($Ce_xNi_3$-HTlc ; x=$0.3{\sim}1.2$) in a fixed-bed reactor. The Ce/Ni ratio of 0.3/3 in the catalyst showed the best catalytic activity but the Ce/Ni ratio became higher above 0.3/3, the catalyst became less active in short-term tests. No ceria promoted catalyst was started to decrease $CH_4$ conversion after 20 h but the Ce/Ni ratio 0.3/3 catalyst was kept its stability in long-term tests.

  • PDF

Steam reforming of biomass tar over Ni/Ru-x/Al2O3 catalysts (Ni/Ru-x/Al2O3 촉매를 이용한 바이오매스 타르 개질)

  • Yoon, Sang Jun;Oh, Kun Woong;Park, Seo Yoon;Kim, Yong Gu;Seo, Myung Won;Ra, Ho Won;Lee, Jae-Goo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.355-356
    • /
    • 2014
  • Catalytic steam reforming of tar produced from biomass gasification was conducted using several Ni-based catalysts. K and Mn were used as a promoter over $Ni/Ru/Al_2O_3$ catalyst. The pellet and monolith type catalysts were prepared and applied to lab and bench-scale biomass gasification system. The $Ni/Ru-K/Al_2O_3$ catalyst shown higher performance than $Ni/Ru-Mn/Al_2O_3$ catalyst at low temperature range.

  • PDF

Transformation of C9 Aromatics on Metal Loaded Mordenite (금속담지 Mordenite 에 의한 C9 Aromatics 전환반응)

  • Lee, Hak-Sung;Kim, Byung-Kyu;Park, Bok-Soo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.240-248
    • /
    • 1990
  • The catalytic activity and selectivity of metal loaded H-mordenite for transalkylation of $C_9$ aromatics were studied in a continuous flow fixed bed reactor under high pressure. Nickel loaded H-mordenite(T-Ni) catalyst showed high activity and slow decay of activity. Molybdenum and nickel loaded H-mordenite(T-NiMo) catalyst also showed high activity and suppressed coking of hydrocarbons. The selectivity of xylene for T-Ni and T-NiMo catalysts decreased with temperature, but that for T catalyst(commercial grade) monotonically increased with temperature within the experimental range. The performance of T-Ni and T-NiMo catalysts was better than that of T catalyst in terms of initial activity and its decay. The addition of Mo improved slightly stability of T-Ni catalyst.

  • PDF

A basic study on the recovery of Ni, Cu, Fe, Zn ions from wastewater with the spent catalyst (폐산화철촉매에 의한 폐수중 Ni, Cu, Fe, Zn이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.3-8
    • /
    • 2004
  • A basic study on the recovery of heavy metals such as Zn, Ni, Cu and Fe ions from wastewater was carried out with the spent iron oxide catalyst, which was used in the Styrene Monomer(SM) production company. The heavy metals could be recovered more than 98% with the spent iron oxide catalyst. The alkaline components of the spent catalyst could be precipitated the metal ions of the wastewater as metal hydroxides at the higher pH 10.6 in Ni, pH 8.0 in Cu, pH 6.5 in Fe, pH 8.5 in Zn. But the metal ions are adsorbed physically on the surface of the spent catalyst in the range of the pH of the metal hydroxides and pH 3.0, which is the isoelectric point of the iron oxide catalyst.

Steam Reforming of Toluene Over Ni/Coal Ash Catalysts: Effect of Coal Ash Composition

  • Jang, Jinyoung;Oh, Gunung;Ra, Ho Won;Yoon, Sung Min;Mun, Tae Young;Seo, Myung Won;Moon, Jihong;Lee, Jae-Goo;Yoon, Sang Jun
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.232-238
    • /
    • 2021
  • The development of a low cost catalyst with high performance and small amount of carbon deposition on catalyst from toluene steam reforming were investigated by using coal ash as a support material. Ni-loaded coal ash catalyst showed similar catalytic activity for toluene steam reforming compared with the Ni/Al2O3. At 800 ℃, the toluene conversion was 77% for Ni/TAL, 68% for Ni/KPU and 78% for Ni/Al2O3. Ni/TAL showed similar toluene conversion to Ni/Al2O3. However, Ni/KPU produced higher hydrogen yield at relatively lower toluene conversion. Ni/KPU catalyst showed a remarkable ability of suppressing the carbon deposition. The difference in coke deposition and hydrogen yield is due to the composition of KPU ash (Ca and Fe) which increase coke resistance and water gas shift reaction. This study suggests that coal ash catalysts have great potential for the application in the steam reforming of biomass tar.

Effects of Base Metal on the Partial Oxidation of Methane Reaction (메탄의 부분산화반응에 미치는 Base metal의 영향)

  • 오영삼;장보혁;백영순;이재의;목영일
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.256-264
    • /
    • 1999
  • The performance of the Pt-B/cordierite catalysts (2 wt%) Pt, 70 wt% Alumina, 28 wt%) Ceria and Zirconia, B: base metal) loaded with 6∼12 wt% Mn, Cu, V, Co, Cr and Ba, respectively was studied for partial oxidation of methane reaction and compared with that of Ni loaded catalyst. As a results, it was found that Ba, Co, Cr as well as Ni loaded catalysts showed higher activity for methane partial oxidation of methane than the Mn, Cu and V loaded catalyst. But it was known that catalysts having good activity for methane showed the good activity for coke formation, too. A XRD analysis of the catalyst before and after the reaction using 5 wt% Ni/Al$_2$O$_3$) showed that there were three Ni phases. In these results, it was found that methane oxidation reaction occulted at the front of the catalyst bed consisted of NiAl$_2$O$_4$and NiO and reforming reaction occurred at the rear part of the catalyst bed consisted of reduced Ni.

  • PDF

Direct Growth of Graphene on Insulating Substrate by Laminated (Au/Ni) Catalyst Layer

  • Ko, Yong Hun;Kim, Yooseok;Jung, Daesung;Park, Seung Ho;Kim, Ji Sun;Shim, Jini;Yun, Hyeju;Song, Wooseok;Park, Chong-Yun
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.117-124
    • /
    • 2015
  • A direct growth method of graphene on insulating substrate without catalyst etching and transfer process was developed using Au/Ni/a-C catalyst system. During the growth process, behavior of the Au/Ni catalyst was investigated using EDX, XPS, SEM, and Raman spectroscopy. The Au/Ni catalyst layer was evaporated during growth process of graphene. The graphene film was composed mono-layer flakes. The transmittance of the graphene film was ~80.6%.

THE PARTIAL COMBUSTION OF METHANE TO SYNGAS OVER PRECIOUS METALS AND NICKEL CATALYSTS SUPPORTED ON -γAL2O3 AND CEO2

  • Seo, Ho-Joon
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.131-137
    • /
    • 2005
  • The catalytic activity of precious metals(Rh, Pd, Pt) and nickel catalysts supported on ${\gamma}-Al_2O_3\;and\;CeO_2$ in the partial combustion of methane(PCM) to syngas was investigated based on the product distribution in a fixed bed now reactor under atmospheric condition and also on analysis results by SEM, XPS, TPD, BET, and XRD. The activity of the catalysts based on the syngas yield increased in the sequence $Rh(5)/CeO_2{\geq}Ni(5)/CeO_2>>Rh(5)/Al_2O_3>Pd(5)/Al_2O_3>Ni(5)/Al_2O_3$. Compared to the precious catalysts, the syngas yield and stability of the $Ni(5)/CeO_2$ catalyst were almost similar to $(5)/CeO_2$ catalyst, and superior to these of any other catalysts. The syngas yield of $Ni(5)/CeO_2$ catalyst was 90.66% at 1023 K. It could be suggested to be the redox cycle of the successive reaction and formation of active site, $Ni^{2-}$ and the lattice oxygen, $O^{2-}$ produced due to reduction of $Ce^{4-}$ to $Ce^{3-}$.

Catalytic CO2 Methanation over Ni Catalyst Supported on Metal-Ceramic Core-Shell Microstructures (금속-세라믹 코어-쉘 복합체에 담지된 Ni 금속 촉매를 적용한 CO2 메탄화 반응 특성연구)

  • Lee, Hyunju;Han, Dohyun;Lee, Doohwan
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.154-162
    • /
    • 2022
  • Microstructured Al@Al2O3 and Al@Ni-Al LDH (LDH = layered double hydroxide) core-shell metal-ceramic composites are prepared by hydrothermal reactions of aluminum (Al) metal substrates. Controlled hydrothermal reactions of Al metal substrates induce the hydrothermal dissolution of Al ions at the Al-substrate/solution interface and reconstruction as porous metal-hydroxides on the Al substrate, thereby constructing unique metal-ceramic core-shell composite structures. The morphology, composition, and crystal structure of the core-shell composites are affected largely by the ions in the hydrothermal solution; therefore, the critical physicochemical and surface properties of these unique metal-ceramic core-shell microstructures can be modulated effectively by varying the solution composition. A Ni/Al@Al2O3 catalyst with highly dispersed catalytic Ni nanoparticles on an Al@Al2O3 core-shell substrate was prepared by a controlled reduction of an Al@Ni-Al LDH core-shell prepared by hydrothermal reactions of Al in nickel nitrate solution. The reduction of Al@Ni-Al LDH leads to the exolution of Ni ions from the LDH shell, thereby constructing the Ni nanoparticles dispersed on the Al@Al2O3. The catalytic properties of the Ni/Al@Al2O3 catalyst were investigated for CO2 methanation reactions. The Ni/Al@Al2O3 catalyst exhibited 2 times greater CO2 conversion than a Ni/Al2O3 catalyst prepared by conventional incipient wetness impregnation and showed high structural stability. These results demonstrate the high effectiveness of the design and synthesis methods for the metal-ceramic composite catalysts derived by hydrothermal reactions of Al metal substrates.

Synthesis and Microstructure Analysis of NiO Catalysts Coated on the FeCrAl Metal Alloy Foam for Hydrogen Production (수소제조를 위한 다공성 FeCrAl 금속 합금 Foam의 NiO 촉매 담지 및 미세구조 분석)

  • Lee, Yu-Jin;An, Geon-Hyoung;Park, Man-Ho;Lee, Chang-Woo;Choi, Sang-Hyun;Jung, Ju-Yong;Jo, Sung-Jong;Lee, Kun-Jae;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.393-400
    • /
    • 2014
  • NiO catalysts were successfully coated onto FeCrAl metal alloy foam as a catalyst support via a dip-coating method. To demonstrate the optimum amount of NiO catalyst on the FeCrAl metal alloy foam, the molar concentration of the Ni precursor in a coating solution was controlled, with five different amounts of 0.4 M, 0.6 M, 0.8 M, 1.0 M, and 1.2 M for a dip-coating process. The structural, morphological, and chemical bonding properties of the NiO-catalyst-coated FeCrAl metal alloy foam samples were assessed by means of field-emission scanning electron microscopy(FESEM), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). In particular, when the FeCrAl metal alloy foam samples were coated using a coating solution with a 0.8 M Ni precursor, well-dispersed NiO catalysts on the FeCrAl metal alloy foam compared to the other samples were confirmed. Also, the XPS results exhibited the chemical bonding states of the NiO phases and the FeCrAl metal alloy foam. The results showed that a dip-coating method is one of best ways to coat well-dispersed NiO catalysts onto FeCrAl metal alloy foam.