• Title/Summary/Keyword: Ni/ZnO

Search Result 527, Processing Time 0.029 seconds

Stable isotope and water quality analysis of coal bed methane produced water in the southern Qinshui Basin, China

  • Pan, Jienan;Zhang, Xiaomin;Ju, Yiwen;Zhao, Yanqing;Bai, Heling
    • Membrane and Water Treatment
    • /
    • v.4 no.4
    • /
    • pp.265-275
    • /
    • 2013
  • China is one of the countries with the highest reserves of coal bed methane (CBM) in the world. Likewise, the CBM industry is significantly growing in China. However, activities related to CBM development have led to more environmental problems, which include serious environmental damage and pollution caused by CBM-produced water. In this paper, the detailed characteristics of CBM-produced water in the southern Qinshui Basin were investigated and analyzed and compared with local surface water and coal mine drainage. Most of CBM-produced water samples are contaminated by higher concentration of total dissolved solids (TDS), K (Potassium), Na (Sodium) and $NH_4$. The alkalinity of the water from coalmines and CBM production was higher than that of the local surface water. The concentrations of some trace elements such as P (Phosphorus), Ti (Titanium), V (Vanadium), Cr (Chromium), Ni (Nickel), Zn (Zinc), Ge (Germanium), As (Arsenic), Rb (Rubidium), and Pd (Palladium) in water from the coalmines and CBM production are higher than the acceptable standard limits. The ${\delta}D$ and ${\delta}^{18}O$ values of the CBM-produced water are lower than those of the surface water. Similarly, the ${\delta}D$ values of the CBM-produced water decreased with increasing drainage time.

반응성 스퍼터의 Se Cracker Reservoir Zone 온도에 따른 특성분석

  • Kim, Ju-Hui;Park, Rae-Man;Kim, Je-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.585-585
    • /
    • 2012
  • $Cu(In_{1-x}Ga_x)Se_2$(CIGS) 박막 태양전지는 Chalcopyrite 계 박막 태양전지로 Cu, In, Ga, Se 각 원소의 조성을 적절히 조절하여 박막을 성장시킨다. 성장시킨 CIGS 박막은 광흡수계수가 $10^5cm^{-1}$로 다른 물질보다 뛰어나고 직접 천이형 반도체로서 얇은 두께로도 고효율의 박막 제작이 가능하다. CIGS 태양전지를 제조하는 방법은 3-stage 동시 증착법, 금속 전구체의 셀렌화 공정법, 전기 증착법 등이 있다. 그 중에 금속 전구체의 셀렌화 공정법은 다른 제조 방법에 비해 대면적 생산에 유리한 장점이 있다. 하지만 아직 상대적으로 3-stage 동시 증착법에 비해 낮은 에너지 변환 효율이 보고된다. 본 실험에서는 기존의 금속 전구체의 셀렌화 공정법과는 달리 전구체 증착과 셀렌화 공정을 동시에 하고, Se cracker를 통하여 Se 원료를 주입하는 방식인 반응성 스퍼터링 공정에서 reservoir zone의 온도 변화에 따른 특성을 분석하였다. Se cracker의 reservoir zone 온도가 증가할수록 Cu/(In+Ga) 비가 증가한다. CIGS 박막 태양전지의 구조는 Al/Ni/ITO/i-ZnO/CdS/CIGS/Mo/Soda lime glass이다. CIGS 박막의 조성비가 Cu/(In+Ga)=0.89, Ga/(In+Ga)=0.17인 박막 태양전지에서 개방전압 0.34 V, 단락전류밀도 $32.61mA/cm^2$, 충실도 56.2% 그리고 변환 효율 6.19%를 얻었다. 본 연구는 2011년도 지식경제부의 재원으로 한국에너지 기술평가원(KTEP)의 지원을 받아 수행한 연구 과제입니다(No.20093020010030).

  • PDF

반응성 스퍼터링 후 열처리를 이용한 CIGS 박막의 조성비 변화에 따른 특성분석

  • Lee, Ho-Seop;Park, Rae-Man;Jang, Ho-Jeong;Kim, Je-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.375-375
    • /
    • 2011
  • Cu(In1-xGax)Se2 (CIGS)박막증착법 중 금속 전구체의 셀렌화 공정법은 다른 제조 방법에 비해 대면적 생산에 유리하고, 비교적 공정 과정이 간단하다는 장점이 있다. 이 제조 방법은 금속 전구체를 만든 후에 셀렌화 공정을 하게 된다. 셀렌화 공정은 대부분 H2Se 가스를 사용하지만 유독성으로 사용하는데 주의해야 한다. 본 실험은 H2Se를 사용하지 않고 Se원료를 주입하기 위해 Se cracker를 사용했고 금속 전구체 증착과 셀렌화를 동시에 하는 반응성 스퍼터링 후 열처리 법을 이용하여 CIGS 박막을 증착 했다. CIGS의 박막의 Cu/[In+Ga], Ga/[In+Ga]비를 변화시켜 특성변화를 관찰했다. Cu/[In+Ga]비가 감소할수록 CIGS의 결정방향인 (112) 이 우세하게 발달했고 Ga/[In+Ga]비가 증가할수록 CIGS의 결정면 사이의 값이 작아지기 때문에 CIGS peak의 2-Theta 값이 증가하게 된다. CIGS 박막 태양전지의 구조는 Al/Ni/ITO/i-ZnO/CdS/CIGS/Mo/glass 제작했다. CIGS박막의 조성비가 Cu/[In+Ga]=0.84, Ga/[In+Ga]=0.24인 박막태양전지에서 개방전압 0.48 V, 단락전류밀도 33.54 mA/cm2, 충실도 54.20% 그리고 변환효율 8.63%를 얻었다.

  • PDF

$MgF_2$ AR Coating 두께에 따른 CIGS Cell Performance 변화

  • Kim, Ju-Hui;Lee, Gyu-Seok;Jo, Dae-Hyeong;Choe, Hae-Won;Kim, Je-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.373-373
    • /
    • 2011
  • $Cu(In,Ga)Se_2$(CIGS) 박막 태양전지는 Chalcopyrite계 박막 태양전지로 Cu, In, Ga, Se 각 원소의 조성을 적절히 조절하여 박막을 성장시킨다. 성장시킨 CIGS 박막은 광흡수계수가 105cm-1로 다른 물질 보다 뛰어나고 직접 천이형 반도체로서 얇은 두께로도 고효율의 박막 제작이 가능하다. 얇은 두께로도 충분히 빛의 흡수가 가능하지만, cell 표면 반사에 의한 광 손실은 cell 효율을 떨어뜨리게 된다. 본 연구에서는 CIGS 박막 태양전지의 광 흡수 향상을 위해 굴절률이 1.86인 ITO 위에 ITO보다 굴절률이 작은 $MgF_2$ (n=1.377) [1]를 80, 100, 120, 140 nm로 증착하여 $MgF_2$/Al/Ni/ITO/i-ZnO/CdS/CIGS/Mo/SLG 시료를 제작하고, optical reflectance, Quantum Efficiency를 이용하여 분석하였다. optical reflectance 분석 결과, $MgF_2$ AR coating을 한 경우, 두께가 두꺼워짐에 따라 광 반사도가 감소하는 경향을 보였다. 또한 AR coating 두께가 커짐에 따라 fluctuation이 점점 커지며, 파형이 장파장 쪽으로 shift하는 것을 관찰 할 수 있었다. Quantum efficiency (QE)를 분석한 결과 $MgF_2$ AR coating 할 경우, 측정된 대부분의 파장에서 QE가 향상되는 것을 확인할 수 있었다. 하지만 AR coating 두께에 따른 변화는 뚜렷한 차이를 보이지 않았다. AR coating 결과, JSC가 증가하여 efficiency가 향상되는 것을 확인 할 수 있다. 그러나 $MgF_2$ AR coating 80~140 nm 범위에서 cell 효율 변화의 뚜렷한 차이는 관찰할 수 없었다.

  • PDF

Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

  • Raman, N.;Sakthivel, A.;Rajasekaran, K.
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.150-153
    • /
    • 2007
  • New $N_2O_2$ donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and $^1H$ NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of $10{\sim}31{\mu}g/ml$.

Concentration of metallic elements in surface sediments at a waste disposal site in the Yellow Sea (황해 폐기물 투기해역(서해병) 표층 퇴적물의 금속원소 분포)

  • Koh, Hyuk-Joon;Choi, Young-Chan;Park, Sung-Eun;Cha, Hyung-Kee;Chang, Dae-Soo;Lee, Chung-Il;Yoon, Han-Sam
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.787-799
    • /
    • 2013
  • The aim of this study was to investigate the accumulation of metallic elements and the control effect of marine pollution caused by ocean dumping in the sediments at a waste disposal area in the Yellow Sea. In July 2009, concentrations of organic matter and metallic elements (Al, Fe, As, Cd, Cr, Co, Hg, Ni, Mn, Pb, and Zn) were measured in surface sediments at the site. The ignition loss (IL) in the surface sediments showed a mean value of 15.4%, about 1.5 times higher than the mean value of the sediments in the coastal areas of Korea. The chemical oxygen demand (COD) at some disposal sites exceeded 20 mg $O_2/g{\cdot}dry$, which signifies the initial concentration of marine sediment pollutants in Japan. The disposal sites contain higher concentrations of Cr, Cu and Zn than the sediments of bays and estuaries that might be contaminated. The magnitude of both metal enrichment factors (EF) and adverse biological effects suggest that pollution with Cr and Ni occurred due to the dumping of waste in the study area. In addition, the geoaccumulation index (Igeo) showed that the surface sediments were moderately contaminated. By the mid-2000s, when the amount of waste dumped at this site was the highest, the concentration of metallic elements was higher than ever recorded. On the other hand, in 2008-09, the need for environmental management was relatively low compare with the peak. As a result, the quality of marine sediment has been enhanced, considering the effect of waste reduction and natural dilution in the disposal area.

A Study of the Removal Characteristics of Heavy Metal(loid)s using by Product from NoMix Toilet and its Characterization (NoMix toilet 에서 발생하는 부산물을 이용한 수용액내 (준)중금속 제거 특성 및 가능성 연구)

  • Shim, Jaehong;Lim, Jeong-Muk;Kim, Jin-Won;Kim, Hae-Won;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.28-39
    • /
    • 2016
  • Struvite (MgNH4PO4 ⋅ 6H2O) and hydroxyapatite (HAP, Ca10(PO4)6(OH)2) precipitation in urine-separating toilets (NoMix toilets) causes severe maintenance problems and also reduce the phosphate and calcium content. Application of urine separating technique and extraction of by-products from human urine is a cost effective technique in waste water treatment. In this study, we extract urine calcite from human urine by batch scale method, using urease producing microbes to trigger the precipitation and calcite formation process. Extracted urine calcite (calcining at 800℃) is a potential adsorbent for removal of heavy metal(loid)s like (Cd2+, Cu2+, Ni2+, Pb2+, Zn2+ and As3+) along with additional leaching analysis of total nitrogen (T-N), phosphate (T-P) and chemical oxygen demand (COD). The transformations of calcite during synthesis were confirm by characterization using XRD, SEM-EDAX and FT-IR techniques. In additional, the phosphate leaching potential and adsorbate (nitrate) efficiency in aqueous solution was investigated using the calcinedurine calcite. The results indicate that the calcite was effectively remove heavy metal(loid)s lead up to 96.8%. In addition, the adsorption capacity (qe) of calcite was calculated and it was found to be 203.64 Pb, 110.96 Cd, 96.02 Zn, 104.2 As, 149.54 Cu and 162.68 Ni mg/g, respectively. Hence, we suggest that the calcite obtain from the human urine will be a suitable absorbent for heavy metal(loid)s removal from aqueous solution.

Occurrence and Chemical Composition of White Mica from Zhenzigou Pb-Zn Deposit, China (중국 Zhenzigou 연-아연 광상의 백색운모 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.83-100
    • /
    • 2022
  • The Zhenzigou Pb-Zn deposit, which is one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. White mica from this deposit are occured only in layer ore and are classified four type (Type I : weak alteration (clastic dolomitic marble), Type II : strong alteration (dolomitic clastic rock), Type III : layer ore (dolomitic clastic rock), Type IV : layer ore (clastic dolomitic marble)). Type I white mica in weak alteration zone is associated with dolomite that is formed by dolomitization of hydrothermal metasomatism. Type II white mica in strong alteration zone is associated with dolomite, ankerite, quartz and alteration of K-feldspar by hydrothermal metasomatism. Type III white mica in layer ore is associated with dolomite, ankerite, calcite, quartz and alteration of K-feldspar by hydrothermal metasomatism. And type IV white mica in layer ore is associated with dolomite, quartz and alteration of K-feldspar by hydrothermal metasomatism. The structural formulars of white micas are determined to be (K0.92-0.80Na0.01-0.00Ca0.02-0.01Ba0.00Sr0.01-0.00)0.95-0.83(Al1.72-1.57Mg0.33-0.20Fe0.01-0.00Mn0.00Ti0.02-0.00Cr0.01-0.00V0.00Sb0.02-0.00Ni0.00Co0.02-0.00)1.99-1.90(Si3.40-3.29Al0.71-0.60)4.00O10(OH2.00-1.83F0.17-0.00)2.00, (K1.03-0.84Na0.03-0.00Ca0.08-0.00Ba0.00Sr0.01-0.00)1.08-0.85(Al1.85-1.65Mg0.20-0.06Fe0.10-0.03Mn0.00Ti0.05-0.00Cr0.03-0.00V0.01-0.00Sb0.02-0.00Ni0.00Co0.03-0.00)1.99-1.93(Si3.28-2.99Al1.01-0.72)4.00O10(OH1.96-1.90F0.10-0.04)2.00, (K1.06-0.90Na0.01-0.00Ca0.01-0.00Ba0.00Sr0.02-0.01)1.10-0.93(Al1.93-1.64Mg0.19-0.00Fe0.12-0.01Mn0.00Ti0.01-0.00Cr0.01-0.00V0.00Sb0.00Ni0.00Co0.05-0.01)2.01-1.94(Si3.32-2.96Al1.04-0.68)4.00O10(OH2.00-1.91F0.09-0.00)2.00 and (K0.91-0.83Na0.02-0.01Ca0.02-0.00Ba0.01-0.00Sr0.00)0.93-0.83(Al1.84-1.67Mg0.15-0.08Fe0.07-0.02Mn0.00Ti0.04-0.00Cr0.06-0.00V0.02-0.00Sb0.02-0.01Ni0.00Co0.00)2.00-1.92(Si3.27-3.16Al0.84-0.73)4.00O10(OH1.97-1.88F0.12-0.03)2.00, respectively. It indicated that white mica of from the Zhenzigou deposit has less K, Na and Ca, and more Si than theoretical dioctahedral mica. Compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution. It means that the Fe in white mica exists as Fe2+ and Fe3+, but mainly as Fe2+. Therefore, white mica from layer ore of the Zhenzigou deposit was formed in the process of remelting and re-precipitation of pre-existed minerals by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. And compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution during hydrothermal metasomatism depending on wallrock type, alteration degree and ore/gangue mineral occurrence frequency.

Selective Leaching Process of Precious Metals (Au, Ag, etc.) from Waste Printed Circuit Boards (PCBs) (廢 PCBs부터 귀금속(Au, Ag 등)의 선택적 침출공정)

  • 오치정;이성오;국남표;김주환;김명준
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.29-35
    • /
    • 2001
  • This study was carried out to recover gold, silver and valuable metals from the printed circuit boards (PCBs) of waste computers. PCBs samples were crushed under 1 mm by a shredder and separated into 30% conducting and loft nonconducting materials by an electrostatic separator. The conducting materials contained valuable metals which were then used as feed materials for magnetic separation. 42% of magnetic materials from the conducting materials was removed by magnetic separation as nonvaluable materials and the others, 58% of non magnetic materials, was used as leaching samples containing 0.227 mg/g Au and 0.697 mg/g Ag. Using the materials of leaching from magnetic separation, more than 95% of copper, iron, zinc, nickel and aluminium was dissolved in 2.0M sulfuric acid solution, added with 0.2M hydrogen peroxide at $85^{\circ}C$. Au and Ag were not extracted in this solution. On the other hand, more than 95% of gold and 100% of silver were leached by the selective leaching with a mixed solvent (0.2M($NH_4$)$_2$$S_2$$O_3$,0.02M $CuSO_4$,0.4M $NH_4$OH). Finally, the residues were reacted with a NaCl solution to leach Pb whereas sulfuric acid was used to leach Sn. Recoveries reached 95% and 98% in solution, respectively.

  • PDF

Source Identification of Ambient PM-10 Using the PMF Model (PMF 모델을 이용한 대기 중 PM-10 오염원의 확인)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.701-717
    • /
    • 2003
  • The objective of this study was to extensively estimate the air quality trends of the study area by surveying con-centration trends in months or seasons, after analyzing the mass concentration of PM-10 samples and the inorganic lements, ion, and total carbon in PM-10. Also, the study introduced to apply the PMF (Positive Matrix Factoriza-tion) model that is useful when absence of the source profile. Thus the model was thought to be suitable in Korea that often has few information about pollution sources. After obtaining results from the PMF modeling, the existing sources at the study area were qualitatively identified The PM-10 particles collected on quartz fiber filters by a PM-10 high-vol air sampler for 3 years (Mar. 1999∼Dec.2001) in Kyung Hee University. The 25 chemical species (Al, Mn, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, Pb, Si, N $a^{#}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$, C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, TC) were analyzed by ICP-AES, IC, and EA after executing proper pre - treatments of each sample filter. The PMF model was intensively applied to estimate the quantitative contribution of air pollution sources based on the chemical information (128 samples and 25 chemical species). Through a case study of the PMF modeling for the PM-10 aerosols. the total of 11 factors were determined. The multiple linear regression analysis between the observed PM-10 mass concentration and the estimated G matrix had been performed following the FPEAK test. Finally the regression analysis provided source profiles (scaled F matrix). So, 11 sources were qualitatively identified, such as secondary aerosol related source, soil related source, waste incineration source, field burning source, fossil fuel combustion source, industry related source, motor vehicle source, oil/coal combustion source, non-ferrous metal source, and aged sea- salt source, respectively.ively.y.