• Title/Summary/Keyword: Next generation desalination technology

Search Result 7, Processing Time 0.02 seconds

Bibliometric analysis of twenty-year research trend in desalination technologies during 2000-2020 (계량서지적 분석을 활용한 핵심 담수화 기술의 연구 동향)

  • Lee, Gyeonghun;Kim, Hye-Won;Boo, Chanhee;Beak, Youngbin;Kwak, Rhokyun;Kim, Choonsoo;Jeong, Seongpil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2021
  • The global water shortage is getting more attention by global climate change. And water demand rapidly increases due to industrialization and population growth. Desalination technology is being expected as an alternative water supply method. Desalination technology requires low energy or maintenance costs, making it a competible next generation technology, with examples such as forward osmosis (FO), membrane distillation (MD), capacitive deionization (CDI), and electrodialysis (ED) to compete with reverse osmosis (RO). In order to identify recent research trends in desalination technologies (FO, MD, RO, CDI, and ED) between 2000-2020, a bibliometric analysis was conducted in the current study. The number of published papers in desalination technology have increased in Desalination and Journal of Membrane Science mainly. Moreover, it was found that FO, MD, RO, CDI, and ED technologies have been applied in various research areas including electrochemical, food processing and carbon-based material synthesis. Recent research topics according to the desalination technologies were also identified.

Effect of the Temperature and Pressure on Pressure Retarded Osmosis Performance (온도와 압력 변화가 압력지연삼투 공정 성능에 미치는 영향)

  • Sim, Jin-woo;Nam, Sook-Hyun;Koo, Jae-Wuk;Kim, Eun-Ju;Yoon, Young Han;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.321-325
    • /
    • 2016
  • The Pressure Retarded Osmosis (PRO) is the next generation desalination technique and is considered as a eco-friendly energy. This was conducted to evaluate the effect of the temperature and pressure on the PRO performance. The flux of the permeation was measured under different operating conditions and estimated the power density. An improvement of PRO performance is depend on increasing solution temperature and optimum pressure. The effect of increasing feed solution temperature has stronger impact on the PRO performance comparing to the draw solution temperature. The reason of the results was due to the change of osmotic power, viscosity, water permeability and structure parameter(s).

Electrochemical Ion Separation Technology for Carbon Neutrality (탄소중립을 지향하는 전기화학적 이온 분리(EIONS) 기술)

  • Hwajoo Joo;Jaewuk Ahn;Sung-il Jeon;Jeyong Yoon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.331-346
    • /
    • 2023
  • Recently, green processes that can be directly used in an energy-efficient and electrified society to achieve carbon neutrality are attracting attention. Existing heat and pressure-based desalination technologies that consume tremendous amounts of energy are no exception, and the growth of next-generation electrochemical-based desalination technologies is remarkable. One of the most representative electrochemical desalination technologies is electrochemical ion separation (EIONS) technology, which includes capacitive desalination (CDI) and battery desalination (BD) technology. In the research field of EIONS, various system applications have been developed to improve system performance, such as capacity and cyclability. However, it is very difficult to understand the meaning and novelty of these applications immediately because there are only a few papers that summarize the research background for domestic readers. Therefore, in this review paper, we aim to describe the technological advances and individual characteristics of each system in clear and specific detail about the latest EIONS research. The driving principle, research background, and strengths and weaknesses of each EIONS system are explained in order. In addition, this paper concluded by suggesting the future development and research direction of EIONS. Researchers who are just beginning out in EIONS research can also benefit from this study because it will help them understand the research trend.

Development of Graphene Nanocomposite Membrane Using Layer-by-layer Technique for Desalination (다층박막적층법을 이용한 담수화용 그래핀 나노복합체 분리막 개발)

  • Yu, Hye-Weon;Song, Jun-Ho;Kim, Chang-Min;Yang, Euntae;Kim, In S.
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.75-82
    • /
    • 2018
  • Forward osmosis (FO) desalination system has been highlighted to improve the energy efficiency and drive down the carbon footprint of current reverse osmosis (RO) desalination technology. To improve the trade-off between water flux and salt rejection of thin film composite (TFC) desalination membrane, thin film nanocomposite membranes (TFN), in which nanomaterials as a filler are embeded within a polymeric matrix, are being explored to tailor the separation performance and add new functionality to membranes for water purification applications. The objective of this article is to develop a graphene nanocomposite membrane with high performance of water selective permeability (high water flux, high salt rejection, and low reverse solute diffusion) as a next-generation FO desalination membrane. For advances in fabrication of graphene oxide (GO) membranes, layer-by-layer (LBL) technique was used to control the desirable structure, alignment, and chemical functionality that can lead to ultrahigh-permeability membranes due to highly selective transport of water molecules. In this study, the GO nanocomposite membrane fabricated by LBL dip coating method showed high water flux ($J_w/{\Delta}{\pi}=2.51LMH/bar$), water selectivity ($J_w/J_s=8.3L/g$), and salt rejection (99.5%) as well as high stability in aqueous solution and under FO operation condition.

Performance Evaluation of Absorbent Solution for Draw Solute Recovery in Forward Osmosis Desalination Process (정삼투식 담수공정의 유도용질 회수를 위한 흡수용액 성능 평가)

  • Kim, Young;Lee, Jong Hoon;Lee, Kong Hoon;Kim, Yu-Chang;Oh, Dong Wook;Lee, Jungho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.240-244
    • /
    • 2013
  • Although forward osmosis desalination technology has drawn substantial attention as a next-generation desalination method, the energy efficiency of its draw solution treatment process should be improved for its commercialization. When ammonium bicarbonate is used as the draw solute, the system consists of forward-osmosis membrane modules, draw solution separation and recovery processes. Mixed gases of ammonia and carbon dioxide generated during the draws solution separation, need to be recovered to re-concentrate ammonium bicarbonate solution, for continuous operation as well as for the economic feasibility. The diluted ammonium bicarbonate solution has been proposed as the absorbent for the draw solution regeneration. In this study, experiments are conducted to investigate performance and features of the absorption corresponding to absorbent concentration. It is concluded that ammonium bicarbonate solution can be used to recover the generated ammonia and carbon dioxide. The results will be applied to design and operation of pilot-scale forward-osmosis desalination system.

Functional Nanochannels to Control Ion Transportation with Monomolecule Selectivity (단일 이온 인식형 이송 제어 기능성 나노채널 기술)

  • Kim, Jeong Hwan;Lee, Eung-Sug;Whang, Kyung-Hyun;Yoo, Yeong-Eun;Yoon, Jae-Sung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.249-255
    • /
    • 2015
  • Functional nanochannels were fabricated in order to control selective ion transportation with high permeability and low energy consumption. In this research, nanochannel platform fabrication process and surface functionalization process were developed. In addition, selective ion transportation and concentration measurement system was also set-up. By using fabricated multilayer metal membrane with electrical bias, 95% of ion ($Cl^-$) was blocked. This developed process is new-conceptional membrane fabrication technology and is expected to be applied to next-generation water purification/desalination, portable artifical kidney, and artificial sense organ.

Application of Seawater Plant Technology for supporting the Achievement of SDGs in Tarawa, Kiribati (키리바시 타라와의 지속가능발전목표 달성 지원을 위한 해수플랜트 기술 활용)

  • Choi, Mi-Yeon;Ji, Ho;Lee, Ho-Saeng;Moon, Deok-Soo;Kim, Hyeon-Ju
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.136-143
    • /
    • 2021
  • Pacific island countries, including Kiribati, are suffering from a shortage of essential resources as well as a reduction in their living space due to sea level rise and coastal erosion from climate change, groundwater pollution and vegetation changes. Global activities to solve these problems are being progressed by the UN's efforts to implement SDGs. Pacific island countries can adapt to climate change by using abundant marine resources. In other words, seawater plants can assist in achieving SDGs #2, #6 and #7 based on SDGs #14 in these Pacific island countries. Under the auspice of Korea International Cooperation Agency (KOICA), Korea Research Institute of Ships and Ocean Engineering (KRISO) established the Sustainable Seawater Utilization Academy (SSUA) in 2016, and its 30 graduates formed the SSUA Kiribati Association in 2017. The Ministry of Oceans and Fisheries (MOF) of the Republic of Korea awarded ODA fund to the Association. By taking advantage of seawater resource and related plants, it was able to provide drinking water and vegetables to the local community from 2018 to 2020. Among the various fields of education and practice provided by SSUA, the Association hope to realize hydroponic cultivation and seawater desalination as a self-support project through a pilot project. To this end, more than 140 households are benefiting from 3-stage hydroponics, and a seawater desalination system in connection with solar power generation was installed for operation. The Association grows and supplies vegetable seedlings from the provided seedling cultivation equipment, and is preparing to convert to self-support business from next year. The satisfaction survey shows that Tarawa residents have a high degree of satisfaction with the technical support and its benefits. In the future, it is hoped that SSUA and regional associations will be distributed to neighboring island countries to support their SDGs implementations.