• Title/Summary/Keyword: Next Generation Mobile Communications

Search Result 152, Processing Time 0.022 seconds

A Call Admission Control Algorithm in 3GPP LTE System for Guarantee of Packet Delay (패킷 지연 보장을 위한 LTE 시스템의 호 수락 제어 알고리즘)

  • Bae, Sueng-Jae;Choi, Bum-Gon;Lee, Jin-Ju;Kwon, Sung-Oh;Chung, Min-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.458-467
    • /
    • 2009
  • Long Tenn Evolution (LTE) is the next generation mobile phone technology which has being standardized by the Third Generation Partnership Project (3GPP). In the existing mobile communication networks, voice traffic is delivered through circuit switched networks. In LTE, however, all kinds of traffic are transferred through IP based packet switched networks which has best-effort characteristic. Therefore, providing QoS in LTE system is difficult. In order to provide QoS in LTE, RRM is very important. Especially, in part of RRM, call admission control (CAC) performs an important function to reduce network congestion and guarantee a certain level of QoS for on-going calls. In this paper, we propose a CAC algorithm in order to provide QoS for various kinds of services in LTE system. The performance of the proposed algorithm is evaluated with various simulation environments. The results show that the proposed algorithm provides QoS through rejections of requested calls. Especially, the proposed CAC algorithm can be satisfied with packet delay requirement defined in LTE specification.

Multipath Searcher for W-CDMA System (W-CDMA 시스템을 위한 다중경노 탐색기)

  • 원석호;김환우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6B
    • /
    • pp.601-609
    • /
    • 2002
  • In multi-path wireless channels with time-variant delay profile, a mobile station measures the received signal strength and report it to network which performs network control function such as handover. In order to improve the maximum ratio combining (MRC) gain, it also should search the strongest signal paths and measure their time offsets fast and exactly. This paper proposes some methods of fast and exactly measuring the multi-path signal strength and time offset. Since the W-CDMA system adopts antenna diversity technique for the next generation high speed packet access (HSDPA) service, we derive the optimum design parameter values for the proposed methods through computer simulations under the HSDPA conditions o( low speed of mobile, of no power control, and of multi-path wireless environment with transmit and receive antenna diversity. Finally, we prove the validity of the proposed methods by showing the improvement of the bit error rate (BER) performance.

Efficient subcarrier allocation for OFDM transmission in multi-services application (다중 서비스 환경을 위한 효율적인 OFDM 부채널 배정 방법)

  • Lee, Jong-Hun;Song, Sang-Seop
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.40-47
    • /
    • 2006
  • The next-generation mobile communication system are required to provide high-data-rate and high quality transmission over hostile radio channels. Orthogonal Frequency Division Multiplexing(OFDM) technique regarded as a most promising solution in mobile environment. This paper considers the issue of efficient subcarrier allocation for OFDM system in multi-service application. Proposed algorithm can consider channel gain of each service and divide subchannel. Proposed method considers priority of service and divide more subchannels in high priority service. When proposed algorithm compares with existent algorithm, the convergence rate improves and the calculation amount is decreased.

  • PDF

Improved Differential Detection Scheme of Space-Time Trellis Coded MDPSK For MIMO (MIMO에서 시공간 부호화된 MDPSK의 성능을 향상시키기 위한 차동 검파 시스템)

  • Kim, Chong-Il;Lee, Ho-Jin;Yoo, Hang-Youal;Kim, Jin-Yong;Kim, Seung-Youal
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1869-1876
    • /
    • 2006
  • Recently, STC techniques have been considered to be candidate to support multimedia services in the next generation mobile radio communications and have been developed the many communications systems in order to achieve the high data rates. In this paper, we Nose the Trellis-Coded Differential Space Time Modulation system with multiple symbol detection. The Trellis-code performs the set partition with unitary group codes. The Viterbi decoder containing new branch metrics is introduced in order to improve the bit error rate (BER) in the differential detection of the unitary differential space time modulation. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbi decoder improves BER performance without sacrificing bandwidth and power efficiency.

Error Detection of Phase Offsets for Binary Sequences (이원부호의 위상오프셋 오류 검출)

  • Song, Young-Joon;Han, Young-Yearl
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.27-35
    • /
    • 1999
  • In this paper, we propose an error detection scheme of phase offsets for binary sequences including PN (Pseudo Noise) sequences based on the number theoretical approach. It is important to know phase offsets of spreading sequences in the CDMA (Code Division Multiple Access) mobile communication systems because phase offsets of the same spreading sequence are used to achieve the acquisition and are used to distinguish each base station. When the period of the sequence is not very long, the relative phase offset between the sequence and its shifted replica can be found by comparing them, but as the period of the sequence increases it becomes difficult to find the phase offset. The error detection failure probability of the proposed method is derived, and it is confirmed by the simulation results. We also discuss the circuit realization of the proposed method and show it can be easily implemented.

  • PDF

On Antenna Orientation for Inter-Cell Interference Coordination in Cellular Network MIMO Systems

  • Sheu, Jeng-Shin;Lyu, Shin-Hong;Huang, Chuan-Yuan
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.639-648
    • /
    • 2016
  • Next-generation (4G) systems are designed to support universal frequency reuse (UFR) to achieve best use of valuable spectra. However, it leads to undesirable interference level near cell borders. To control this, 4G systems adopt techniques, such as network multiple-input multiple-output (MIMO) and inter-cell interference coordination (ICIC), to improve cell-edge throughput. Network MIMO aims at mitigating inter-cell interference towards cell-edge users (CEUs) through multi-cell cooperation, where each collaborative base station serves both cell-center users (CCUs) and CEUs, including other cells' CEUs, under a power constraint. The present ICIC strategies cannot be directly applied to network MIMO because they were designed in absence of multi-cell coordination. In the presence of network MIMO, this paper investigates antenna orientations in ICIC and the method of power management. Results show that a proper antenna orientation can improve the cell-edge capacity and meantime lower the interference to CCUs. Capacity inconsistency between CCUs and CEUs is detrimental to mobile communications. Simulation results show that the proposed power management for ICIC in network MIMO systems can achieve a uniform data rate regardless users' position.

Multiple Symbol Detection of Trellis coded Differential space-time modulation for OFDM (OFDM에서 트렐리스 부호화된 차동 시공간 변조의 다중 심벌 검파)

  • 유항열;한상필;김진용;김성열;김종일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.223-229
    • /
    • 2004
  • Recently, OFDM and STC techniques have been considered to be candidate to support multimedia services in the next generation mobile radio communications and have been developed the many communications systems in order to achieve the high data rates. In this paper, we propose the Trellis-Coded Differential Space Time Modulation-OFDM system with multiple symbol detection. The Trellis-code performs the set partition with unitary group codes. The Viterbi decoder containing new branch metrics is introduced in order to improve the bit error rate (BER) in the differential detection of the unitary differential space time modulation. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbl decoder improves BER performance without sacrificing bandwidth and power efficiency.

  • PDF

3GPP LTE-Assisted Wi-Fi-Direct: Trial Implementation of Live D2D Technology

  • Pyattaev, Alexander;Hosek, Jiri;Johnsson, Kerstin;Krkos, Radko;Gerasimenko, Mikhail;Masek, Pavel;Ometov, Aleksandr;Andreev, Sergey;Sedy, Jakub;Novotny, Vit;Koucheryavy, Yevgeni
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.877-887
    • /
    • 2015
  • This paper is a first-hand summary on our comprehensive live trial of cellular-assisted device-to-device (D2D) communications currently being ratified by the standards community for next-generation mobile broadband networks. In our test implementation, we employ a full-featured 3GPP LTE network deployment and augment it with all necessary support to provide realtime D2D connectivity over emerging Wi-Fi-Direct (WFD) technology. As a result, our LTE-assisted WFD D2D system enjoys the required flexibility while meeting the existing standards in every feasible detail. Further, this paper provides an account on the extensive measurement campaign conducted with our implementation. The resulting real-world measurements from this campaign quantify the numerical effects of D2D functionality on the resultant system performance. Consequently, they shed light on the general applicability of LTE-assisted WFD solutions and associated operational ranges.

A Handover Method for Service Continuity of Mobile Multimedia (이동 멀티미디어 서비스의 연속성 보장을 위한 핸드오버 방법)

  • Lee, Jong-Chan;Lee, Moon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.770-777
    • /
    • 2007
  • Smaller cell size in the micro-cell or pico-cell structure brings about more frequent hand-overs between cells, and higher speed movement of the mobile terminal makes short the permissible time interval for executing these hand-over procedures. In this situation the hand-over failure may occur or some packets may be lost during the hand-over. Moreover a rapid degradation of throughput is triggered by packet re-transmission for compensating such errors. The QoS (Quality of Services) of mobile multimedia applications with higher bits rate requirements and higher speed mobility are severely affected by even shot service interruption. This paper proposes a new hand-over scheme to provide seamless services in the next generation mobile communication systems. Simulation is done to evaluate the performance of the proposed scheme based on its hand-over failure rate and packet loss rate.

A Handover Method Based On the Position Information of a Mobile Terminal (이동 단말기의 위치 정보에 기반한 핸드오버 방법)

  • Lee Jong-Chan;Lee Moon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4A
    • /
    • pp.385-392
    • /
    • 2006
  • It is widely accepted that high user densities in mobile multimedia environments can only be achieved with micro- and pico-cell. The smaller cell size causes frequent handovers between cells, and decreases permissible handover processing delay. This may result in the handover failure, in addition to the loss of some packets during the handover. In these cases, re-transmission is needed in order to compensate errors, which in turn triggers a rapid degradation of throughput. In this paper, we propose a new handover scheme for the next generation mobile communication systems, in which the handover setup process is done in advance before a handover request by predicting the handover cell based on mobile terminal's current position and moving direction. Simulation is performed in order to analyze the handover failure rate and packet loss rate. Simulation results show that our proposed method provides a better performance than the conventional method.