• 제목/요약/키워드: Newtonian science

검색결과 122건 처리시간 0.025초

Sodium bis-(2-ethylhexyl)sulfosuccinate-water 미셀의 틱소트로 피와 다일레턴시 유동단위에 대한 비뉴톤 유동메카니즘 (Non-Newtonian Flow Mechanism for Thixotropic and Dilatant Flow Units of Sodium bis-(2-ethylhexyl)sulfosuccinate-water Micelles)

  • 김남정
    • 한국응용과학기술학회지
    • /
    • 제33권3호
    • /
    • pp.540-548
    • /
    • 2016
  • sodium bis-(2-ethylhexyl)sulfosuccinate-water 라멜라 액정의 비뉴톤 유동곡선을 cone-plate 레오메타를 사용하여 여러 농도와 온도 조건에서 얻었다. 이러한 비뉴톤 유동곡선을 비뉴톤 유동식에 적용하여 유동파라메타를 구하였다. 특별히 주목할 점은 액정시료의 전단속도에 대한 전단응력은 증가와 감소에서 틱소트로피와 다일레턴시 현상을 보여 hysteresis loop를 나타내고 있다는 점이다. sodium bis-(2-ethylhexyl)sulfosuccinate-water 라멜라 액정은 작은 전단속도에서는 약한 젤 현상을 보이지만 응력이 한계 응력 이상에서는 비 선형 점탄성 성질을 나타낸다. 전단속도 감소에서 분산계는 전단속도가 증가할 때 측정된 값 보다는 큰 구조변화와 전단응력을 유지하고 있다.

Blood Viscosity Measurements Using a Pressure-Scanning Capillary Viscometer

  • Sehyun Shin;Keum, Do-Young;Ku, Yun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1719-1724
    • /
    • 2002
  • A previously designed capillary viscometer with measuring differential pressure was modified to measure the viscosity of non-Newtonian fluids including unadulterated blood continuously over numerous shear rates in a single measurement. Because of unavoidable experimental noise and a limited number of data, the previous capillary viscometer experienced an inaccuracy and could not directly determine a viscosity without an iterative calculation. However, in the present measurement there are numerous data available near the point of interest so that the numeric value of the derivative, d(In Q)/d(In Q$\sub$w/), is no longer sensitive to the method of differentiation. In addition, relatively low and wide shear rate viscosity measurements were possible because of the present precision pressure-scanning method with respect to time. For aqueous polymer solutions, excellent agreement was found between the results from the pressure-scanning capillary viscometer and those from a commercially available rotating viscometer. In addition, the pressure-scanning capillary viscometer measured the viscosity of unadulterated whole blood without adding any anticoagulants.

The impacts of thermophoresis via Cattaneo-Christov heat flux model

  • Ahmad, Manzoor;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Taj, Muhammad;Alshoaibi, Adil
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.255-262
    • /
    • 2022
  • The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. The impacts of thermophoresis and Brownian motions are further accounted. The fluid impinging orthogonally on the surface is due to power-law slim coating liquid. The generalized newtonian fluid equation is used that obeys the power law constitutive equation to model our problem. The effect of velocity profiles, temperature for different values of n are investigated. The prandtl on the temperature distribution for partial slip and no slip cases is also observed. It is found that for larger values of prandtl number thermal diffusivity of fluid reduces and it enhance the decrease in temperature and boundary layer thickness.

Rheological properties of arabinogalactan solutions related to the carbohydrate composition of different legumes

  • Kyeongyee Kim;Choon Young Kim
    • 한국식품저장유통학회지
    • /
    • 제30권5호
    • /
    • pp.785-796
    • /
    • 2023
  • The aim of this study was to elucidate chemical structures and rheological properties of arabinogalactans (AGs) isolated from three legumes including black gram (BG), great northern bean (GNB), and California small white bean (CSWB). The ratio of galactose to arabinose (G/A) in three legumes increased in the order of BG > GNB > CSWB. The rheological measurements of 1-5% (w/v) AG solutions revealed Newtonian and non-Newtonian flow behaviors. BG exhibited yield stress, indicating plastic behavior. Small-amplitude oscillatory tests indicated viscoelastic properties of BG, GNB, and CSWB ranging from solid-like, paste-like, and liquid-like behaviors, respectively. Small-strain oscillatory tests were conducted to assess the structure recovery of the AGs after pre-shearing. G" values of BG and GNB increased, but those of CSWB remained constant after shearing. These results suggest that the chemical structures of the AGs, particularly their G/A ratios, influence their rheological properties.

Rheological behavior of dilute bubble suspensions in polyol

  • Lim, Yun-Mee;Dongjin Seo;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • 제16권1호
    • /
    • pp.47-54
    • /
    • 2004
  • Low Reynolds number, dilute, and surfactant-free bubble suspensions are prepared by mechanical mixing after introducing carbon dioxide bubbles into a Newtonian liquid, polyol. The apparent shear viscosity is measured with a wide-gap parallel plate rheometer by imposing a simple shear flow of capillary numbers(Ca) of the order of $10^{-2}$ ~ $10^{-1}$ and for various gas volume fractions ($\phi$). Effects of capillary numbers and gas volume fractions on the viscosity of polyol foam are investigated. At high capillary number, viscosity of the suspension increases as the gas volume fraction increases, while at low capillary number, the viscosity decreases as the gas volume fraction increases. An empirical constitutive equation that is similar to the Frankel and Acrivos equation is proposed by fitting experimental data. A numerical simulation for deformation of a single bubble suspended in a Newtonian fluid is conducted by using a newly developed two-dimensional numerical code using a finite volume method (FVM). Although the bubble is treated by a circular cylinder in the two dimensional analysis, numerical results are in good agreement with experimental results.

Rheology and pipeline transportation of dense fly ash-water slurry

  • Usui, Hiromoto;Li, Lei;Suzuki, Hiroshi
    • Korea-Australia Rheology Journal
    • /
    • 제13권1호
    • /
    • pp.47-54
    • /
    • 2001
  • Prediction of the maximum packing volume fraction with non-spherical particles has been one of the important problems in powder technology. The sphericity of fly ash particles depending on the particle diameter was measured by means of a CCD image processing instrument. An algorithm to predict the maximum packing volume fraction with non-spherical particles is proposed. The maximum packing volume fraction is used to predict the slurry viscosity under well dispersed conditions. For this purpose, Simha's cell model is applied for concentrated slurry with wide particle size distribution. Also, Usui's model developed for aggregative slurries is applied to predict the non-Newtonian viscosity of dense fly ash - water slurry. It is certified that the maximum packing volume fraction for non-spherical particles can be successfully used to predict slurry viscosity. The pressure drop in a pipe flow is predicted by using the non-Newtonian viscosity of dense fly ash-water slurry obtained by the present model. The predicted relationship between pressure drop and flow rate results in a good agreement with the experimented data obtained for a test rig with 50 mm inner diameter tube. Base on the design procedure proposed in this study, a feasibility study of fly ash hydraulic transportation system from a coal-fired power station to a controlled deposit site is carried out to give a future prospect of inexpensive fly ash transportation technology.

  • PDF

In-vitro study on the hemorheological characteristics of chicken blood in microcirculation

  • Ji, Ho-Seong;Lee, Jung-Yeop;Lee, Sang-Joon
    • Korea-Australia Rheology Journal
    • /
    • 제19권2호
    • /
    • pp.89-95
    • /
    • 2007
  • The flow characteristics of chicken blood in a micro-tube with a $100{\mu}m$ diameter are investigated using a micro-Particle Image Velocimetry (PIV) technique. Chicken blood with 40% hematocrit is supplied into the micro-tube using a syringe pump. For comparison, the same experiments are repeated for human blood with 40% hematocrit. Chicken blood flow has a cell-free layer near the tube wall, and this layer's thickness increases with the increased flow speed due to radial migration. As a hemorheological feature, the aggregation index of chicken blood is about 50% less than that of human blood. Therefore, the non-Newtonian fluid features of chicken blood are not very remarkable compared with those of human blood. As the flow rate increases, the blunt velocity profile in the central region of the micro-tube sharpens, and the parabolicshaped shear stress distribution becomes to have a linear profile. The viscosity of both blood samples in a low shear rate condition is overestimated, while the viscosity in a high shear rate range is underestimated due to radial migration and the presence of a cell-depleted layer.

Non-Newtonian Intrinsic Viscosities of Biopolymeric and Nonbiopolymeric Solutions (I)

  • Jang, Chun-Hag;Kim, Jong-Ryul;Ree, Tai-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권4호
    • /
    • pp.318-324
    • /
    • 1987
  • Experimental results for viscous flow of poly (${\gamma}$ -methyl L-glutamate) solutions have been published elsewhere. The data of $[{\eta}]^f / [{\eta}]^0$ are expressed by the following equation, $\frac{[{\eta}^f]}{[{\eta}^{\circ}]}=1-\frac{A}{\eta^\circ}{1-\frac{sin^{-1}[{\beta}_2(f/{\eta}_0)\;{e}xp\;(-c_2f^2/{\eta}_0^2kT)]}{{\beta}_2f/{\eta}_0}$ (A1) where $[{\eta}]^f\; and\; [{\eta} ]^0$ are the intrinsic viscosity at shear stress f and zero, respectively, $ A{\equiv}lim\limits_{C{\rightarrow}0}[(1/C)(X_2/{\alpha}_2)({\beta}_2/{\eta}_0)],{\eta}_0$ viscosity of the solvent, ${\beta}_2$ is the relaxation time of flow unit 2, $c_2$ is a constant related to the elasticity of flow unit 2. The theoretical derivation of Eq.(A1) is given in the text. The experimental curves of $[{\eta}]^f / [{\eta}]^0$ vs. log f are compared with the theoretical curves calculated from Eq.(A1) with good results. Eq.(A1) is also applied to non-biopolymeric solutions, and it was found that in the latter case $c_2 = 0.$ The reason for this is explained in the text. The problems related to non-Newtonian flows are discussed.

Non-Newtonian Intrinsic Viscosities of Biopolymeric and Non-biopolymeric Solutions (II)

  • Jang, Chun-Hag;Kim, Chang-Hong;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권4호
    • /
    • pp.332-335
    • /
    • 1987
  • This paper is a continuation of our previous $paper,^1$ and deals with Eq.(1) (see the text), which was theoretically derived in the $paper,^1$$ [{\eta}]^f\; and\; [{\eta}]^0$ is the intrinsic viscosity at stress f and f = O, respectively. Equation (1) predicts how $[{{\eta}}]^f / [{\eta}]^0$ changes with stress f, relaxation time ${\beta}_2$ of flow unit 2 and a constant $c_2$ related with the elasticity of molecular spring of flow unit 2. In this paper, Eq.(1) is applied to a biopolymer, e.g., poly (${\gamma}$-benzyl L-glutamate), and nonbiopolymers, e.g., polyisobutylene, polystyrene, polydimethylsiloxane and cellulose triacetate. It was found that the $c_2$ factor is zero for non-biopolymers while $c_2{\neq}0$ for biopolymers as found $previously.^1$ Because of the non-Newtonian nature of the solutions, the ratio $[{{\eta}}]^f / [{\eta}]^0$ drops from its unity with increasing f. We found that the smaller the ${\beta}_2,$ the larger the $f_c$ at which the viscosity ratio drops from the unity, vice versa.

저비용 수제 연신레오미터 개발 및 성능 평가 (Development and performance evaluation of a low-cost custom-made extensional rheometer)

  • 김시현;박한별;김정현
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.110-118
    • /
    • 2023
  • Characterizing the extensional rheological properties of non-Newtonian fluids is crucial in many industrial processes, such as inkjet printing, injection molding, and fiber engineering. However, educational institutions and research laboratories with budget constraints have limited access to an expensive commercial extensional rheometer. In this study, we developed a custom-made extensional rheometer using a CO2 laser cutting machine and 3D printer. Furthermore, we utilized a smartphone with a low-cost microscopic lens for achieving a high spatial resolution of images. The aqueous polyethylene-oxide (PEO) solutions and a Boger fluid were prepared to characterize their extensional properties. A transition from a visco-capillary to an elasto-capillary regime was observed clearly through the developed rheometer. The extensional relaxation time and viscosity of the aqueous PEO solutions with a zero-shear viscosity of over 300 mPa·s could be quantified in the elasto-capillary regime. The extensional properties of the solutions with relatively small zero shear viscosity could be calculated using a smartphone's slow-motion feature with increasing temporal resolution of the images.