• 제목/요약/키워드: Newtonian science

검색결과 122건 처리시간 0.025초

Molecular Conformation and Non-Newtonian Viscosity Behavior of Poly(L-proline) in Various Solvent Systems

  • Jang, Chun-Hag;Kim, Hyun-Don;Lee, Jang-Oo
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권5호
    • /
    • pp.399-404
    • /
    • 1994
  • The non-Newtonian viscosities (the specific or intrinsic viscosities) of poly(L-proline) (PLP, $M_v$=19,000 and 32,000) in various mixed-solvent systems like water-propanol and acetic acid-propanol of varying compositions were measured during the reverse mutarotation (Form II ${\rightarrow}$Form I) by the application of external pressure (up to 4.5 psi). The non-Newtonian viscosity effect was found to be larger in acetic acid-propanol system than in water-propanol system and to somewhat decrease during the reverse mutarotation at a given solvent system. The non-Newtonian viscosity behavior of PLP in aqueous salt ($CaCl_2$) solution was also studied, from which it was found that the degree of the non-Newtonian effect decreased with increasing salt concentration, and increased with increasing PLP molecular weight. These findings could be explained in terms of conformational changes of PLP in solution (like the helix-helix or helix-coil transition) involved.

Continuous Viscosity Measurement of Non-Newtonian Fluids over a Range of Shear Rates Using a Mass-Detecting Capillary Viscometer

  • Sehyun Shin;Keum, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.255-261
    • /
    • 2002
  • A newly designed mass-detecting capillary viscometer uses a novel concept to continuously measure non-Newtonian fluids viscosity over a range of shear rates. A single measurement of liquid-mass variation with time replaces the now rate and pressure drop measurements that are usually required by capillary tube viscometers. Using a load cell and a capillary, we measured change in the mass flow rate through a capillary tube with respect to the time, m(t), from which viscosity and shear rate were mathematically calculated. For aqueous polymer solutions, excellent agreement was found between the results from the mass-detecting capillary viscometer and those from a commercially available rotating viscometer. This new method overcomes the drawbacks of conventional capillary viscometers meassuring non-Newtonian fluid viscosity. First, the mass-detecting capillary viscometer can accurately and consistently measure non -Newtonian viscosity over a wide range of shear rate extending as low as 1 s$\^$-1/. Second, this design provides simplicity (i. e., ease of operation, no moving parts), and low cost.

3체 문제와 연성계의 형성 (Three Body Problem and Formation of Binary System)

  • Jae Woo Park;Kyu Hong Choi;Kyong Chol Chou
    • Journal of Astronomy and Space Sciences
    • /
    • 제2권1호
    • /
    • pp.19-33
    • /
    • 1985
  • 3체 문제에 있어서 Newtonian 운동방정식의 특이접은 수치적분에 의한 특수해를 구하는 과정에서 정확도를 떨어뜨리고 computer 사용시간을 증가시킨다. 이러한 특이점은 Newtonian 운동방정식의 독립변수와 좌표축을 변환하는 정칙화(regularization)과정을 통해 제거할 수 있다.이 논문에서는 정칙화된 Newtonian 운동방정식을 $5^{th}$ -order Runge-Kutta 방법으로 특수해를 구하기 위해 BASIC 언어로 작성한 computer program 으로 적절한 초기위치와 초기속도를 가정하여 시간에 따른 3체의 위치와 속도를 계산하였다. 그 결과, 이러한 3중성계의 진화는 결국 분열되어 3체 중 1개는 쌍곡선 궤도를 그리면서 계를 탈출하고 나머지 2개는 연성계를 형성하게 되었다. 이는 연성계의 기원을 설명할 수 있는 하나의 방버이 되지 않을까 생각한다.

  • PDF

거친 발수 표면에 충돌하는 유체 방울의 팽창 및 수축 역학: 미세 유체 방울의 형성 (Spreading and retraction dynamics of a liquid droplet impacting rough hydrophobic surfaces: Formation of micrometer-sized drops)

  • 김의진;김정현
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.15-21
    • /
    • 2021
  • In this study, we investigated the dynamics of a droplet impacting rough hydrophobic surfaces through high-speed imaging. Micrometer-sized structures with grooves and pillars were fabricated on smooth Polydimethylsiloxane (PDMS) surfaces by laser ablation. We used Newtonian and non-Newtonian liquid droplets to study the drop impact dynamics. De-ionized water and aqueous glycerin solutions were used for the Newtonian liquid droplet. The solutions of xanthan gum in water were prepared to provide elastic property to the Newtonian droplet. We found that the orientation of the surface structures affected the maximal spreading diameter of the droplet due to the degree of slippage. During the droplet retraction, the dynamic receding contact angles were measured to be around 90° or less. It resulted in the formation of the micro-capillary bridges between the receding droplet and the surface structures. Then, the rupture of the capillary bridge led to the formation of micrometer-sized droplets on top of the surface structures. The size of the microdroplets was found to increase with increasing the impacting velocity and viscosity of the Newtonian liquid droplets. However, the size of the isolated microdroplets decreased with enhancing the elasticity of the droplets, and the size of the non-Newtonian microdroplets was not affected by the impacting velocity.

Laminar Heat and Fluid Flow Characteristic with a Modified Temperature-Dependent Viscosity Model in a Rectangular Duct

  • Sohn Chang-Hyun;Chang Jae-Whan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.382-390
    • /
    • 2006
  • The present study proposes a modified temperature-dependent non-Newtonian viscosity model and investigates the flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effects of temperature dependent viscosity, buoyancy, and secondary flow caused by the second normal stress difference are considered. Calculated Nusselt numbers by the modified temperature-dependent viscosity model give good agreement with the experimental results. The heat transfer enhancement of viscoelastic fluid in a rectangular duct is highly dependent on the secondary flow caused by the magnitude of second normal stress difference.

Behaviors of Anisotropic Fluids in the Vicinity of a Wedge

  • Kim, Youn-J.
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.690-698
    • /
    • 2000
  • The laminar boundary layer flow and heat transfer of anisotropic fluids in the vicinity of a wedge have been examined with constant surface temperature. The similarity variables found by Falkner and Skan are employed to reduce the stream wise-dependence in the coupled nonlinear boundary layer equations. The numerical solutions are presented using the fourth-order Runge - Kutta method and the distribution of velocity, micro-rotation, shear and couple stresses and temperature across the boundary layer are plotted. These results are also compared with the corresponding flow problems for Newtonian fluid over wedges. It is found that for a constant wedge angle, the skin friction coefficient is lower for micropolar fluid, as compared to Newtonian fluid. For the case of the constant material parameter K, however, the magnitude of velocity for anisotropic fluid is greater than that of Newtonian fluid. The numerical results also show that for a constant wedge angle with a given Prandtl number, Pr = I, the effect of increasing values of K results in increasing thermal boundary layer thickness for anisotropic fluid, as compared with Newtonian fluid. For the case of the constant material parameter K, however, the heat transfer rate for anisotropic fluid is lower than that of Newtonian fluid.

  • PDF

비 뉴톤 유동 메카니즘에서 틱소트로피 식과 유변 파라메타 (Thixotropic Equation and Rheological Parameters on Non-Newtonian Flow Mechanism)

  • 김남정
    • 한국응용과학기술학회지
    • /
    • 제32권3호
    • /
    • pp.386-393
    • /
    • 2015
  • 콜로이드 분산계와 같은 복잡한 물질의 유변성질은 전단 흐름이 일어날 때 비뉴톤 유동현상을 나타낸다. 이들 유변성질은 유동단위의 성질과 유동 세그먼트 사이의 상호작용에 의하여 영향을 받는다. 유동곡선을 이론적인 틱소트로피식에 적용하여 여러 틱소트로피 유동 곡선에 대한 유동파라메타, 완화시간, $({\beta}_2)_0$, 구조적인 요인, $C_2$, 전단 모듈러스, $X_2/{\alpha}_2$을 구하였다. 유변 파라메타의 변화는 비뉴톤 유동, 점도, 유동 세그먼트의 유동 활성화 에너지와 직접적인 관계가 있다.

수정 뉴토니안 방법을 이용한 평형유동 해석 프로그램 개발 (Development of Equilibium Flow Calculation Program Using a Modified Newtonian Method)

  • 최재혁
    • 한국군사과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.483-491
    • /
    • 2016
  • A simple aerodynamic calculation program for high Mach number flow is developed by combining the modified Newtonian method with Tannehill's curve fits for the thermodynamic properties of air in equilibrium state. Aerodynamic characteristics for a parabolic nose are predicted and compared with CFD(Computational Fluid Dynamics) analysis results. Comparison shows good agreements, and the developed program is expected to be a practical tool for slender body aerodynamic calculation for high Mach number flow.

Non-Newtonian Characteristics of Gochujang and Chogochujang at Different Temperatures

  • Choi, Ji Eun;Lee, Jun Ho
    • Preventive Nutrition and Food Science
    • /
    • 제22권1호
    • /
    • pp.62-66
    • /
    • 2017
  • This study was conducted to determine the rheological properties of gochujang and chogochujang at different temperatures (25, 35, and $45^{\circ}C$). Rheological properties of the samples were determined using a rotational rheometer at a shear range of 1 to $40s^{-1}$. Gochujang and chogochujang were found to be non-Newtonian fluids according to the Herschel-Bulkley model. Yield stress and consistency coefficient of gochujang at different temperatures were higher than those of chogochujang, whereas the opposite was observed for flow behavior index. Moreover, all rheological properties of gochujang and chogochujang decreased with increasing temperature. The consistency coefficient was related to temperature using an Arrhenius-type relationship. Gochujang (14.48 kJ/mol) had slightly higher activation energy than chogochujang (14.03 kJ/mol).

전처리 농축 정도에 따른 Aloe Vera gel의 동결건조분말의 물성 (Physical Properties of Freeze-Dried Powder of Aloe Vera Gel with Respect to the Concentrating Degree as Pre-Treatment)

  • 이남재;이승주
    • 한국식품과학회지
    • /
    • 제41권1호
    • /
    • pp.32-36
    • /
    • 2009
  • 농축시킨 Aloe vera gel을 동결건조하였을 때 그 농축도 차이에 의한 최종 건조분말의 물성 변화를 비교분석하였다. 분말의 최종 수분함량은 거의 차이가 없었으며. 점성 측정에서는 높은 농축 조건의 경우 전형적인 shear thinning 현상과 non-Newtonian 유체의 속성을 나타냈다. 이에 비하여 낮은 농축 조건의 경우 Newtonian 액체의 성질과 고형분이 입자가 아닌 풀린 형태로 존재할 때 나타나는 현상을 보였다. 분말이 물에 용해되는 동안 전기전도도의 변화를 실시간으로 측정한 결과 평형상태에 도달하였을 때, 가장 높은 농축 조건에서 전기전도도가 가장 낮게 나타나, 비전해질성 물질의 용해도가 가장 큰 것으로 해석되었다. 분말의 등온흡습성에서는 농축이 증가할수록 수분 흡착과 결합수의 양이 작아지는 것으로 분석되었다. 결과적으로 Aloe vera gel을 농축하여 동결건조할 때는 그 농축도에 따라 점성, 현탁시 전기전도도에 따른 용해성, 등온흡습성이 변하는 것으로 나타나, 특정 품질의 동결건조제품을 얻기 위해서는 그에 대한 농축의 최적화가 필요한 것으로 생각된다.