• Title/Summary/Keyword: Newton's third law

Search Result 4, Processing Time 0.021 seconds

The Sources of Students' Misconception about Newton's Third Law (Newton의 제3법칙에 대한 오인(誤認)의 원인분석)

  • Oh, Kang-Soo;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.8 no.1
    • /
    • pp.57-72
    • /
    • 1988
  • It is very important for a teacher to know what his students know and what they do not; however, it seems not true for the most Korean secondary school science techers. This study tried to find students' misconception Newton's third law and the sources of the misconceptions. The researcher examined 609 students from middle schools, high schools, and college. In this study, students' understanding on Newton's third law were examined by school level, sex, stream (science and liberal arts), and departments. The following results were obtained by this study. 1. Students' understanding seemed to be improved continuously from middle school to university; however, their misconception (the most frequent incorrect selection of options of the test items) did not changed very much. 2. Students' answers were significantly affected by size of objects, existence of physical contact and the existence of life in the objects. 3. The answer were significantly affected by the source of attraction. 4. The answer to Newton's third law were affected by the magnitude of potential force which the target bodies have, state of motion, velocity, weight, friction and acceleration. This study could show the sources of the misconception on Newton's third law. The identified sources could be very useful for designing an instruction to teach Newton's third law in schools and universities.

  • PDF

Fundamental Aspects of the Unbalance Condition for the Forces involved in Rail Gun Recoil

  • Banerjee, Arindam;Radcliffe, P.J.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.317-324
    • /
    • 2014
  • The forces involved in the firing of the electromagnetic rail gun may be analyzed from Amperian, Maxwellian and Einsteinian approaches. This paper discusses these different paradigms with regard to rail gun performance modeling relating to the generation and balance of the forces caused by the currents and their induced magnetic fields. Recent experimental work on model rail guns, where the armature is held static, shows very little recoil upon the rails, thereby indicating a possible violation of Newton's Third Law of Motion. Dynamic testing to show this violation, as suggested by the authors in an earlier paper, has inherent technical difficulties. A purpose-built finite element C/C++ simulator that models that suspended rail gun firing action shows a net force acting upon the entire rail gun system. A new effect in physics, universal in scope, is thus indicated: a current circulating in an asymmetric and rigid circuit causes a net force to act upon the circuit for the duration of the current. This conclusion following from computer simulation based upon Maxwellian electrodynamics as opposed to the more modern relativistic quantum electrodynamics needs to be supported by unambiguous experimental validation.

Pre-Service Elementary Teachers' Views on 'Action and Reaction': Focused on their Understandings and Typically-Perceived-Situations (TPS) (초등예비교사의 '작용과 반작용' 개념 -이해 정도와 전형적 인식상황 분석을 중심으로-)

  • Joung, Yong Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.6
    • /
    • pp.851-866
    • /
    • 2016
  • The purpose of this study is to investigate pre-service elementary teachers' views of the law of action-reaction by examining their degrees of understanding and Typically-Perceived-Situations (TPS). Data were collected from 177 Grade 3 pre-service elementary teachers. The results of analyzing these data show: First, the participants did not sufficiently understand about the law of action-reaction, and their degrees of understanding were different depending on the situation provided in the questionnaire. Second, in relation to the TPSs of the law of action-reaction, the participants thought of irrelevant situations to the law of action-reaction such as "a situation generated by inertia" as well as commonly relevant ones such as "a person pushing a wall", and had somewhat biased TPSs in terms of 'action type' and 'result motion type' of action-reaction. Finally, several suggestions on the science education for promotion of understanding about the law of action-reaction were given.

A study on a genetic history of the fundamental theorem of calculus (미적분학의 기본정리에 대한 역사-발생적 고찰)

  • 한대희
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.217-228
    • /
    • 1999
  • The fundamental theorem of calculus is the most 'fundamental' content in teaching calculus. Since the aim of teaching the theorem goes beyond simple application of it, it is difficult to teach it meaningfully. Hence, for the meaningful teaching of the fundamental theorem of calculus, this article seeks to find the educational implication of the fundamental theorem of calculus through reviewing the genetic history of it. A genetic history of the fundamental theorem of calculus can be divided into the following five phases: 1. The deductive discovery of the fundamental theorem of calculus 2. Galileo's Law of falling body and the idea of the fundamental theorem of calculus 3. The discovery of the fundamental theorem of calculus and Barrow's proof 4. Newton's mensuration 5. the development of calculus in 19th century and the fundamental theorem of calculus The developmental phases of the fundamental theorem of calculus discussed above provides the three educational implications. first, we can rediscover this theorem through deductive methods and get the ideas of it in relation to kinetic problems. Second, the developmental phases of the fundamental theorem of calculus shows that the value of this theorem lies in the harmony of its theoretical beauty and practicality. Third, Newton's dynamic image of this theorem can be a typical way of understanding the theorem. We have different aims of teaching the fundamental theorem of calculus, according to which the teaching methods can be adopted. But it is self-evident that the simple application of the theorem is just a part of teaching the fundamental theorem of calculus. Hence we must try to put the educational implications reviewed above into practice.

  • PDF