본 연구는 인터넷 뉴스 댓글 빅데이터 분석을 통해 뉴스 댓글 사용자의 정치적 성향을 추정하는 방법을 제안한다. 인터넷 뉴스 댓글과 작성자의 정치 성향을 함께 제공하여 디지털 매체를 통한 정보 전달의 객관성과 중립성을 확보하고자 한다. 250만 건 이상의 인터넷 뉴스 댓글의 특성을 분석하고 사용자의 정치적 성향을 효과적으로 추정하기 위한 특징을 추출한다. 어휘사전 기반 알고리즘과 유사도 기반 알고리즘을 제안하고 실험을 통해 두 알고리즘을 비교하고 효과를 검증한다.
Purpose: A significant amount of public opinion about nurse bullying is expressed on the internet. The purpose of this study was to analyze the linkage structures among words extracted from comments on internet articles related to nurse workplace bullying using semantic network analysis. Methods: From February 2018 to April 2019, comments made on news articles posted to the Daum and Naver web portal containing keywords such as "nurse", "Taeum", and "bullying" were collected using a web crawler written in Python. A morphological analysis performed with Open Korean Text in KoNLPy generated 54 major nodes. The frequencies, eigenvector centralities, and betweenness centralities of the 54 nodes were calculated and semantic networks were visualized using the UCINET and NetDraw programs. Convergence of iterated correlations (CONCOR) analysis was performed to identify structural equivalence. Results: This paper presents results about March 2018 and January 2019 because these months had highest number of articles. Of the 54 major nodes, "nurse", "hospital", "patient", and "physician" were the most frequent and had the highest eigenvector and betweenness centralities. The CONCOR analysis identified work environment, nurse, gender, and military clusters. Conclusion: This study structurally explored public opinion about nurse bullying through semantic network analysis. It is suggested that various studies on nursing phenomena will be conducted using social network analysis.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권5호
/
pp.2491-2508
/
2019
This research investigates the media consumers' behavior with behavioral economics perspective, especially regarding TV content viewers' behavior; how do online communications influence TV viewers' decision when choosing a new TV content among options. We focus on quantity and attribute of comments or reactions on the online news articles. We analyze that online communications data, which were generated before the first broadcast, affect the TV content consumers' choice for a new TV series. Here we identify a predicted utility, experienced utility and distinction bias in TV media consumption to find the effectiveness of the first viewing choice on whole TV series' episodes. To avoid the crucial influence by exogenous factors, such as season and social issue, the test was done with specific conditions. This research found that the total number of reactions to the comments by itself positively affects the audiences' decision-making behavior for a new TV content choice. This influence was regardless of favor/ non-flavor reactions. This study contributes to the literature on media economics and management by exploring the media content users' consuming behavior and making a first step for finding an important influencer on the media content consumption.
Hospitals under competitive environment are getting more interested in PR(public relations) as a means of marketing. A typical form of public relations for the hospital is publicity, and its principal instrument is the press release that provides the mass media with the raw material and background for a news story. The purpose of this paper is to examine and analyze the public relations articles associated with hospitals in the section of health care in major daily newspapers. Three major daily newspapers, Chosun, Joongang and Hankyoreh have been analyzed for a year from January 1, 1998 to December 31, 1998. All articles in the health care section are classified by content, size, press comments, and style. This study has found some perverse aspects of the public relations such as the preponderance of health articles on tertiary medical institutions, inappropriate publicity focused on certain medical treatments, doctors, and hospitals, and the positive press comments on the hospitals that are affiliated with the same corporate group as the newspaper.
Policy polls, which investigate the degree of support that the policy has for policy implementation, play an important role in making decisions. As the number of Internet users increases, the public is actively commenting on their policy news stories. Current policy polls tend to rely heavily on phone and offline surveys. Collecting and analyzing policy articles is useful in policy surveys. In this study, we propose a method of analyzing comments using deep learning technology showing outstanding performance in various fields. In particular, we designed various models based on the recurrent neural network (RNN) which is suitable for sequential data and compared the performance with the support vector machine (SVM), which is a traditional machine learning model. For all test sets, the SVM model show an accuracy of 0.73 and the RNN model have an accuracy of 0.83.
오늘날 인터넷 사용자들은 블로그나 뉴스, 인터넷 게시판 등의 매체에서 댓글을 통해 다른 사람의 의견을 살피고 자신의 의견을 나타내고 있다. 그러나 현재 대부분의 블로그나 인터넷 포털 사이트의 경우 기사나 댓글들을 순차적인 목록 형태로 제공하므로 사용자가 원하는 내용의 댓글을 검색하거나 살펴보는 것은 힘든 일이다. 또한 댓글 사용자가 증가함에 따라 스팸 댓글이나 악플 등이 사회 문제가 되기도 한다. 본 논문에서는 다음 아고라(Daum AGORA) 웹 블로그의 게시글과 댓글을 통계적으로 분석하고 유사도를 기반으로 클러스터링하는 시스템을 제안한다. 본 시스템은 클러스터링 결과를 시각화하여 간단한 스크린 뷰(screen view)로 보여준다. 또한, 본 시스템은 생물정보학에서 잘 알려진 정렬 기법인 Needleman-Wunsch 알고리즘을 이용해 스팸 댓글을 필터링한다.
본 연구는 온라인 저널리즘의 추천기사가 대학생들의 뉴스기사 선택에 미치는 영향을 두 차원에서 분석하였다. 하나는 추천기사이고, 다른 하나는 이들 뉴스기사의 배치순위와 이용지수이다. 분석결과 11개의 추천기사 유형 중 7개 유형은 뉴스기사 선택에 긍정적인 영향을 미치는 것으로 나타난 반면, 4개 유형은 유의미하지 않은 것으로 나타났다. 뉴스기사 선택에 영향을 미치지 않은 것으로 나타난 추천기사 유형의 대부분은 댓글이나 SNS의 트윗과 관련된 것들이다. 또한 뉴스기사 및 검색어 배치순위는 뉴스기사 선택에 영향을 미치는 것으로 나타났으나 이용지수는 영향을 미치지 않은 것으로 나타났다. 한편, 뉴스기사 이용시간과 추천기사 유형 간 그리고 추천기사 유형 간 상관관계는 대부분 유의미한 것으로 나타났다. 분석결과를 종합하면, 뉴스기사 게재위치와 온라인 저널리즘의 추천기사와 같은 형식적 요인은 뉴스기사 헤드라인과 검색어 등의 내용과 더불어 뉴스 이용자들의 뉴스기사 선택에 긍정적인 영향을 미치는 것으로 결론지을 수 있다.
Nuclear energy sources are indispensable in cost effectively achieving carbon neutral economy, where public opinion is critical to adoption as the consequences of nuclear accident can be catastrophic. In this context, discussion on spent nuclear fuel is a prerequisite to expanding nuclear energy, as it leads to the issue of radioactive waste disposal. Given the dearth of study on spent nuclear fuel public acceptance, we use text mining and big data analysis on the news article and public comments data on Naver news portal to identify the Korean public opinion on spent nuclear fuel. We identify that the Korean public is more interested in the nuclear energy policy than spent nuclear fuel itself and that the alternative energy sources affect the position towards spent nuclear fuel. We recommend relating spent nuclear fuel issue with nuclear energy policy and environmental issues of alternative energy sources to further promote spent nuclear fuel.
온라인 뉴스는 기존의 신문을 대체하였고, 우리가 정보에 접근하고 공유하는 방법에 큰 변화를 가져왔다. 뉴스 웹사이트들은 사용자가 댓글을 남길 수 있는 기능을 오랜 시간동안 제공하였고, 그 중 몇몇 뉴스 웹사이트에서는 뉴스 기사들에 대한 사용자의 반응들을 크라우드소싱(crowdsource)하기 시작했다. 감정분석 분야에서는 텍스트에 반영된 감정과 반응들을 컴퓨팅적으로 모델링하기 위한 시도를 하고 있다. 본 연구에서는 뉴스 기사에 대한 반응들이 뉴스 본문과 수학적인 상관관계를 갖는지 밝히기 위해, 사용자로부터 생성된 다섯 가지의 감정 라벨(label)을 사용하여 10가지 카테고리(category)에 해당하는 100,000개 이상의 뉴스 기사들을 분석한다. 본 연구에서는 전처리과정이 최소한으로 필요하고 기계학습이 적용하지 않아도 되는 간단한 감정 분석 알고리즘(algorithm)을 제안한다. 우리는 이 모델이 한국어와 같은 형태론적으로 복잡한 언어에도 효과적이라는 것을 증명한다.
이 연구는 사회 감시견과 상호작용성의 차원에서 살펴 본 기자 블로그의 저널리즘적 특성이 전문기자 블로그와 시민기자 블로그 간에 어떻게 다르게 나타나는지를 비교 분석하였다. 사회의 감시견은 블로그 콘텐츠의 연성화 정도와 내용에 반영된 언론과 정부와의 관계의 측면에서 분석하였고, 상호작용성은 댓글 분석을 통해 규명하였다. 분석대상은 대표적인 시민기자 신문인 <오마이뉴스>와 이와 유사한 이념적 지향성을 지닌 <한겨레>의 전문기자 블로그다. 분석 결과, <오마이뉴스> 시민기자 블로그의 게시물이 <한겨레> 전문기자 블로그 게시물 보다 연성뉴스를 더 많이 다루고 있었으나 정부와 상호 비판적인 견제관계를 유지하는 경향이 상대적으로 강하게 드러나 시민기자 블로그와 전문기자 블로그가 서로 다른 측면에서 사회 감시견의 특성을 보여준다는 사실이 드러났다. 그리고 기자 블로그 게시물에 달린 댓글을 분석하여 파악한 상호작용성은, 댓글의 단순한 상호작용은 <오마이뉴스>에서 더 활발하게 이루어졌으나, 소통적 상호작용은 <한겨레>에서 더욱 강하게 나타난다는 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.