• Title/Summary/Keyword: News Big data

Search Result 291, Processing Time 0.024 seconds

A Study on the Analysis of Museum Gamification Keywords Using Social Media Big Data

  • Jeon, Se-won;Choi, YounHee;Moon, Seok-Jae;Yoo, Kyung-Mi;Ryu, Gi-Hwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.66-71
    • /
    • 2021
  • The purpose of this paper is to identify keywords related to museums, gamification, and visitors, and provide basic data that the museum market can be expanded by using gamification. That used to collect data for blogs, news, cafes, intellectuals, academic information by Naver and Daum which is Web documents in Korea, and Google Web, news, Facebook, Baidu, YouTube, and Twitter for analysis. For the data analysis period, a total of one year of data was selected from April 16, 2020 to April 16, 2021, after Corona. For data collection and analysis, the frequency and matrix of keywords were extracted through Textom, a social matrix site, and the relationship and connection centrality between keywords were analysed and visualized using the Netdraw function in the UCINET6 program. In addition, We performed CONCOR analysis to derive clusters for similar keywords. As a result, a total of 25,761 cases that analysing the keywords of museum, gamification and visitors were derived. This shows that the museum, gamification, and spectators are related to each other. Furthermore, if a system using gamification is developed for museums, the museum market can be developed.

Analysis of News Big Data for Deriving Social Issues in Korea (한국의 사회적 이슈 도출을 위한 뉴스 빅데이터 분석 연구)

  • Lee, Hong Joo
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.3
    • /
    • pp.163-182
    • /
    • 2019
  • Analyzing the frequency and correlation of the news keywords in the modern society that are becoming complicated according to the time flow is a very important research to discuss the response and solution to issues. This paper analyzed the relationship between the flow of social keyword and major issues through the analysis of news big data for 10 years (2009~2018). In this study, political issues, education and social culture, gender conflicts and social problems were presented as major issues. And, to study the change and flow of issues, it analyzed the change of the issue by dividing it into five years. Through this, the changes and countermeasures of social issues were studied. As a result, the keywords (economy, police) that are closely related to the people's life were analyzed as keywords that are very important in our society regardless of the flow of time. In addition, keyword such as 'safety' have decreased in increasing rate compared to frequency in recent years. Through this, it can be inferred that it is necessary to improve the awareness of safety in our society.

How Does the Media Deal with Artificial Intelligence?: Analyzing Articles in Korea and the US through Big Data Analysis (언론은 인공지능(AI)을 어떻게 다루는가?: 뉴스 빅데이터를 통한 한국과 미국의 보도 경향 분석)

  • Park, Jong Hwa;Kim, Min Sung;Kim, Jung Hwan
    • The Journal of Information Systems
    • /
    • v.31 no.1
    • /
    • pp.175-195
    • /
    • 2022
  • Purpose The purpose of this study is to examine news articles and analyze trends and key agendas related to artificial intelligence(AI). In particular, this study tried to compare the reporting behaviors of Korea and the United States, which is considered to be a leader in the field of AI. Design/methodology/approach This study analyzed news articles using a big data method. Specifically, main agendas of the two countries were derived and compared through the keyword frequency analysis, topic modeling, and language network analysis. Findings As a result of the keyword analysis, the introduction of AI and related services were reported importantly in Korea. In the US, the war of hegemony led by giant IT companies were widely covered in the media. The main topics in Korean media were 'Strategy in the 4th Industrial Revolution Era', 'Building a Digital Platform', 'Cultivating Future human resources', 'Building AI applications', 'Introduction of Chatbot Services', 'Launching AI Speaker', and 'Alphago Match'. The main topics of US media coverage were 'The Bright and Dark Sides of Future Technology', 'The War of Technology Hegemony', 'The Future of Mobility', 'AI and Daily Life', 'Social Media and Fake News', and 'The Emergence of Robots and the Future of Jobs'. The keywords with high centrality in Korea were 'release', 'service', 'base', 'robot', 'era', and 'Baduk or Go'. In the US, they were 'Google', 'Amazon', 'Facebook', 'China', 'Car', and 'Robot'.

Current Issues with the Big Data Utilization from a Humanities Perspective (인문학적 관점으로 본 빅데이터 활용을 위한 당면 문제)

  • Park, Eun-ha;Jeon, Jin-woo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.125-134
    • /
    • 2022
  • This study aims to critically discuss the problems that need to be solved from a humanities perspective in order to utilize big data. It identifies and discusses three research problems that may arise from collecting, processing, and using big data. First, it looks at the fake information circulating with regard to problems with the data itself, specifically looking at article-type advertisements and fake news related to politics. Second, discrimination by the algorithm was cited as a problem with big data processing and its results. This discrimination was seen while searching for engineers on the portal site. Finally, problems related to the invasion of personal related information were seen in three categories: the right to privacy, the right to self-determination of information, and the right to be forgotten. This study is meaningful in that it points out the problems facing in the aspect of big data utilization from the humanities perspective in the era of big data and discusses possible problems in the collection, processing, and use of big data, respectively.

A Morphological Analysis Method of Predicting Place-Event Performance by Online News Titles (온라인 뉴스 제목 분석을 통한 특정 장소 이벤트 성과 예측을 위한 형태소 분석 방법)

  • Choi, Sukjae;Lee, Jaewoong;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.1
    • /
    • pp.15-32
    • /
    • 2016
  • Online news on the Internet, as published open data, contain facts or opinions about a specific affair and hence influences considerably on the decisions of the general publics who are interested in a particular issue. Therefore, we can predict the people's choices related with the issue by analyzing a large number of related internet news. This study aims to propose a text analysis methodto predict the outcomes of events that take place in a specific place. We used topics of the news articles because the topics contains more essential text than the news articles. Moreover, when it comes to mobile environment, people tend to rely more on the news topics before clicking into the news articles. We collected the titles of news articles and divided them into the learning and evaluation data set. Morphemes are extracted and their polarity values are identified with the learning data. Then we analyzed the sensitivity of the entire articles. As a result, the prediction success rate was 70.6% and it showed a clear difference with other analytical methods to compare. Derived prediction information will be helpful in determining the expected demand of goods when preparing the event.

Forecasting Birthrate Change based on Big Data (빅데이터 기반의 출산율 변동 예측)

  • Joo, Se-Min;Ok, Seong-Hwan;Hwang, Kyung-Tae
    • Informatization Policy
    • /
    • v.26 no.4
    • /
    • pp.20-35
    • /
    • 2019
  • We empirically analyze the effects of psychological factors, such as the fear of parenting, on fertility rates. An index is calculated based on the share of negative news articles on child care in all social articles from 2000 to 2018. The analysis result shows that as the index increases, the fertility rate after three years falls. This result is repeated in the correlation analysis, simple regression, and VAR analysis. According to Granger causality analysis, it is found that the relation between the index and the fertility rate after three years is not just a simple correlation but a causal relationship. There are differences among age groups. The fertility rate of women in their 20s and 30s shows a significant response to the index, but that of the 40s does not. The index affects the birthrate of first child, but do not affect the birthrate of second or more children. These results are consistent with the intuition that younger women are more likely to be affected by the negative articles about parenting, but not to those who have already experienced childbirth. This study is meaningful in that a significant index for predicting social phenomena is extracted beyond the limited use of news big data such as a simple keyword mention volume monitoring. Also, this big data-based index is a 3-year leading indicator for fertility, which provides the advantage of providing information that helps early detection.

For airline preferences of consumers Big Data Convergence Based Marketing Strategy (소비자의 항공사 선호도에 대한 빅데이터 융합 기반 마케팅 전략)

  • Chun, Yong-Ho;Lee, Seung-Joon;Park, Su-Hyeon
    • Journal of Industrial Convergence
    • /
    • v.17 no.3
    • /
    • pp.17-22
    • /
    • 2019
  • As the value of big data is recognized as important, it is possible to advance decision making by effectively introducing and improving the development and utilization of JAVA and R programs that can analyze vast amounts of existing and unstructured data to governments, public institutions and private businesses. In this study, news data was collated and analyzed through text mining techniques in order to establish marketing strategies based on consumers' airline preferences. This research is meaningful in establishing marketing strategies based on analysis results by analyzing consumers' airline preferences using high-level big data utilization program techniques for data that were difficult to obtain in the past.

A Study on Trends Related to Boryeong Mud Festival Using Tourism Big Data Analysis (관광 빅데이터 분석을 활용한 보령머드축제 관련 동향 탐색 연구)

  • Han Jangheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.165-175
    • /
    • 2023
  • Boryeong Mud Festival has become a representative local festival that both domestic and foreign tourists can enjoy together. In addition, it is one of the usual hands-on marine festivals in Korea that can be enjoyed with one mind at the Boryeong Mud Festival, regardless of race, age, and language. This study explored the overall perception and trends of the Boryeong Mud Festival using big data extracted online from the Boryeong Mud Festival. First, keywords such as Chungnam, hosting, summer, reporter, experience, opening ceremony, performance, operation, news, tourist, opening, event, and festival were frequently exposed online. Second, due to centrality analysis, the centrality of festival experience programs and performances, opening ceremonies, and Boryeong mayor was high. Third, due to the CONCOR analysis, five clusters of meaningful keywords related to the Boryeong Mud Festival were formed.

A Research on Difference Between Consumer Perception of Slow Fashion and Consumption Behavior of Fast Fashion: Application of Topic Modelling with Big Data

  • YANG, Oh-Suk;WOO, Young-Mok;YANG, Yae-Rim
    • The Journal of Economics, Marketing and Management
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • Purpose: The article deals with the proposition that consumers' fashion consumption behavior will still follow the consumption behavior of fast fashion, despite recognizing the importance of slow fashion. Research design, data and methodology: The research model to verify this proposition is topic modelling with big data including unstructured textual data. we combined 5,506 news articles posted on Naver news search platform during the 2003-2019 period about fast fashion and slow fashion, high-frequency words have been derived, and topics have been found using LDA model. Based on these, we examined consumers' perception and consumption behavior on slow fashion through the analysis of Topic Network. Results: (1) Looking at the status of annual article collection, consumers' interest in slow fashion mainly began in 2005 and showed a steady increase up to 2019. (2) Term Frequency analysis showed that the keywords for slow fashion are the lowest, with consumers' consumption patterns continuing around 'brand.' (3) Each topic's weight in articles showed that 'social value' - which includes slow fashion - ranked sixth among the 9 topics, low linkage with other topics. (4) Lastly, 'brand' and 'fashion trend' were key topics, and the topic 'social value' accounted for a low proportion. Conclusion: Slow fashion was not a considerable factor of consumption behavior. Consumption patterns in fashion sector are still dominated by general consumption patterns centered on brands and fast fashion.

A Topic Analysis of SW Education Textdata Using R (R을 활용한 SW교육 텍스트데이터 토픽분석)

  • Park, Sunju
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.4
    • /
    • pp.517-524
    • /
    • 2015
  • In this paper, to find out the direction of interest related to the SW education, SW education news data were gathered and its contents were analyzed. The topic analysis of SW education news was performed by collecting the data of July 23, 2013 to October 19, 2015. By analyzing the relationship among the most mentioned top 20 words with the web crawling using R, the result indicated that the 20 words are the closely relevant data as the thickness of the node size of the 20 words was balancing each other in the co-occurrence matrix graph focusing on the 'SW education' word. Moreover, our analysis revealed that the data were mainly composed of the topics about SW talent, SW support Program, SW educational mandate, SW camp, SW industry and the job creation. This could be used for big data analysis to find out the thoughts and interests of such people in the SW education.