• Title/Summary/Keyword: Newmark

Search Result 409, Processing Time 0.023 seconds

Dynamic Analysis of RC Piloti-Type Building Subjected to Earthquake Loads (지진하중이 작용하는 RC 필로티 건축물의 동적해석)

  • Kim, Ju-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.121-128
    • /
    • 2021
  • Piloti-type buildings in Korea are usually composed of lower frames and upper shear wall structures. Piloti-type buildings have been seriously damaged during earthquakes because of the construction of soft and weak stories. Piloti-type buildings with edge cores are two-way unsymmetric planes. This paper analyzed and obtained the dynamic response for structures modeled using a multistory two-way asymmetric system. The numerical results, obtained using the Newmark-β method, show the time-history responses and trends of maximum displacements and shear forces. The purpose of this study is to evaluate the effect of reinforcement on dynamic response when a shear wall or brace is reinforced in the corner opposite the piloti.

Forced vibration of a functionally graded porous beam resting on viscoelastic foundation

  • Alnujaie, Ali;Akbas, Seref D.;Eltaher, Mohamed A.;Assie, Amr
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • This paper concerns with forced dynamic response of thick functionally graded (FG) beam resting on viscoelastic foundation including porosity impacts. The dynamic point load is proposed to be triangle point loads in time domain. In current analysis the beam is assumed to be thick, therefore, the two-dimensional plane stress constitutive equation is proposed to govern the stress-strain relationship through the thickness. The porosity and void included in constituent is described by three different distribution models through the beam thickness. The governing equations are obtained by using Lagrange's equations and solved by finite element method. In frame of finite element analysis, twelve-node 2D plane element is exploited to discretize the space domain of beam. In the solution of the dynamic problem, Newmark average acceleration method is used. In the numerical results, effects of porosity coefficient, porosity distribution and foundation parameters on the dynamic responses of functionally graded viscoelastic beam are presented and discussed. The current model is efficient in many applications used porous FGM, such as aerospace, nuclear, power plane sheller, and marine structures.

Vibration of multilayered functionally graded deep beams under thermal load

  • Bashiri, Abdullateef H.;Akbas, Seref D.;Abdelrahman, Alaa A.;Assie, Amr;Eltaher, Mohamed A.;Mohamed, Elshahat F.
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.545-557
    • /
    • 2021
  • Since the functionally graded materials (FGMs) are used extensively as thermal barriers in many of applications. Therefore, the current article focuses on studying and presenting dynamic responses of multilayer functionally graded (FG) deep beams placed in a thermal environment that is not addressed elsewhere. The material properties of each layer are proposed to be temperature-dependent and vary continuously through the height direction based on the Power-Law function. The deep layered beam is exposed to harmonic sinusoidal load and temperature rising. In the modelling of the multilayered FG deep beam, the two-dimensional (2D) plane stress continuum model is used. Equations of motion of deep composite beam with the associated boundary conditions are presented. In the frame of finite element method (FEM), the 2D twelve-node plane element is exploited to discretize the space domain through the length-thickness plane of the beam. In the solution of the dynamic problem, Newmark average acceleration method is used to solve the time domain incrementally. The developed procedure is verified and compared, and an excellent agreement is observed. In numerical examples, effects of graduation parameter, geometrical dimension and stacking sequence of layers on the time response of deep multilayer FG beams are investigated with temperature effects.

Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements method

  • Ayman E., Nabawy;Ayman M.M., Abdelhaleem;Soliman. S., Alieldin;Alaa A., Abdelrahman
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.697-713
    • /
    • 2022
  • In the context of the finite elements method, the dynamic behavior of porous functionally graded double wishbone vehicle suspension structural system incorporating joints flexibility constraints under road bump excitation is studied and analyzed. The functionally graded material properties distribution through the thickness direction is simulated by the power law including the porosity effect. To explore the porosity effects, both classical and adopted porosity models are considered based on even porosity distribution pattern. The dynamic equations of motion are derived based on the Hamiltonian principle. Closed forms of the inertia and material stiffness components are derived. Based on the plane frame isoparametric Timoshenko beam element, the dynamic finite elements equations are developed incorporating joint flexibilities constraints. The Newmark's implicit direct integration methodology is utilized to obtain the transient vibration time response under road bump excitation. The presented procedure is validated by comparing the computational model results with the available numerical solutions and an excellent agreement is observed. Obtained results show that the decrease of porosity percentage and material graduation tends to decrease the deflection as well as the resulting stresses of the control arms thus improving the dynamic performance and increasing the service lifetime of the control arms.

Static and dynamic bending of ball reinforced by CNTs considering agglomeration effect

  • Chenghong Long;Dan Wang;H.B. Xiang
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.419-428
    • /
    • 2023
  • In this paper, dynamic and static bending of ball modelled by nanocomposite microbeam by nanoparticles seeing agglomeration is presented. The structural damping is considered by Kelvin-Voigt model. The agglomeration effects are assumed using Mori-Tanaka model. The football ball is modeled by third order shear deformation theory (TSDT). The motion equations are derived by principle of Hamilton's and energy method assuming size effects on the basis of Eringen theory. Using differential quadrature method (DQM) and Newmark method, the static and dynamic deflections of the structure are obtained. The effects of agglomeration and CNTs volume percent, damping of structure, nonlocal parameter, length and thickness of micro-beam are presented on the static and dynamic deflections of the nanocomposite structure. Results show that with increasing CNTs volume percent, the maximum dimensionless dynamic deflection is reduced about 17%. In addition, assuming CNTs agglomeration increases the dimensionless dynamic deflection about 14%. It is also found that with increasing the CNTs volume percent from 0 to 0.15, the static deflection is decreased about 3 times due to the enhance in the stiffness of the structure. In addition, with enhancing the nonlocal parameters, the dynamic deflection is increased about 3.1 times.

Development of Meshless Method Using Least-Squares Method with Geometric Conservation Law for Structural Dynamic Analysis (기하학적 보존을 만족하는 최소제곱법을 활용한 무격자 구조해석 기법 개발)

  • Sang Woo Lee;Jin Young Huh;Kyu Hong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.67-74
    • /
    • 2023
  • A meshless technique using the geometric conservation least-squares method (GC-LSM) was devised to discretize the governing equation of linear elasticity. Although the finite-element method is widely used for structural analysis, a meshless method was developed because of its advantages in a moving grid system. This work is the preliminary phase for developing a fully meshless-based fluid-structure interaction solver. In this study, Cauchy's momentum equation was discretized in strong form using GC-LSM for the structural domain, and the Newmark beta method was used for time integration. The solver was validated in 1D, 2D, and 3D benchmarking problems. Static and dynamic results were obtained. The results are more accurate than those of analytic solutions.

Reliability Analysis of Seismically Induced Slope Deformations (신뢰성 기법을 이용한 지진으로 인한 사면 변위해석)

  • Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • The paper presents a reliability-based method that can capture the impact of uncertainty of seismic loadings. The proposed method incorporates probabilistic concepts into the classical limit equilibrium and the Newmark-type deformation techniques. The risk of damage is then computed by Monte Carlo simulation. Random process and RMS hazard method are introduced to produce seismic motions and also to use them in the seismic slope analyses. The geotechnical variability and sampling errors are also considered. The results of reliability analyses indicate that in a highly seismically active region, characterization of earthquake hazard is the more critical factor, and characterization of soil properties has a relatively small effect on the computed risk of slope failure and excessive slope deformations. The results can be applicable to both circular and non-circular slip surface failure modes.

Vibration control, energy harvesting and forced vibration of the piezoelectric NEMS via paradox-free local/nonlocal theory

  • Zohre Moradi;Farzad Ebrahimi;Mohsen Davoudi
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.335-353
    • /
    • 2023
  • The possibility of energy harvesting as well as controlled vibration of a three-layered beam consisting of two piezoelectric layer and one core layer made of nonpiezoelectric material is investigated using paradox-free local/nonlocal theory. The three-layered nanobeam is resting on an elastic foundation and subjected to a blast load. Also, the core layer is made of Nano-composites reinforced by CNTs and carbon fibers (MHCD). Governing equations as well as boundary conditions are obtained using Hamilton,s principle. The equations discretized by Generalized Differential Quadrature Method (GDQM) and solved by Newmark beta method. In addition, two differential and integral gains are employed for controlling the forced vibration. The size-dependency of the elastic foundation is considered using two-phase elasticity. The effect of elastic foundation, control gains, nonlocal factor, as well as parameters affecting the core material on the forced vibration and energy harvesting is investigated in detail. The equations as well as solution procedure is validated utilizing some compassion studies. This work can be a basis for future studies on energy harvesting and controlled vibration in small scales.

Buckling and forced oscillation of organic nanoplates taking the structural drag coefficient into account

  • Dao Minh Tien;Do Van Thom;Nguyen Thi Hai Van;Abdelouahed Tounsi;Phung Van Minh;Dao Nhu Mai
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.553-565
    • /
    • 2023
  • This work is the first to apply nonlocal theory and a variety of deformation plate theories to study the issue of forced vibration and buckling in organic nanoplates, where the effect of the drag parameter inside the structure has been taken into consideration. Whereas previous research on nanostructures has treated the nonlocal parameter as a fixed value, this study accounts for its effect, and finds that its value fluctuates with the thickness of each layer. This is also a new point that no works have mentioned for organic plates. On the foundation of the notion of potential movement, the equilibrium equation is derived, the buckling issue is handled using Navier's solution, and the forced oscillation problem is solved using the finite element approach. Additionally, a set of numerical examples exhibiting the forced vibration and buckling response of organic nanoplates are shown. These findings indicate that the nonlocal parameter and the drag parameter of the structure have a substantial effect on the mechanical responses of organic nanoplates.

Dynamic response analysis of nanoparticle-nanobeam impact using nonlocal theory and meshless method

  • Isa Ahmadi;Mohammad Naeim Moradi;Mahdi Davar Panah
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.135-153
    • /
    • 2024
  • In this study, the impact response of a nanobeam with a moving nanoparticle is investigated. Timoshenko beam theory is used to model the nanobeam behavior and nonlocal elasticity theory is used to consider the effects of small dimensions. The interaction between the nanoparticle and nanobeam has been described using Lennard-Jones potential theory and the equations are discretized by the radial basis meshless method and a mathematical model is presented for the nanobeam-nanoparticle system. Validation of the proposed model is achieved by comparing the obtained natural frequencies with reference values, demonstrating good agreement. Dimensionless frequency analysis reveals a decrease with increasing nonlocal parameter, pointing out a toughening effect in nanobeam. The dynamic response of the nanobeam and nanoparticle is obtained by time integration of equations of motion using Newmark and Wilson-𝜃 methods. A comparative analysis of the two methods is conducted to determine the most suitable approach for this study. As a distinctive aspect in this study, the analysis incorporates the deformation of the nanobeam resulting from the nanoparticle-nanobeam interaction when calculating the Lennard-Jones force in the nanobeam-nanoparticle system. The numerical findings explore the impact of various factors, including the nonlocal parameter, initial velocity, nanoparticle mass, and boundary conditions.