• Title/Summary/Keyword: New-RC

Search Result 585, Processing Time 0.027 seconds

Strengthening of preloaded RC columns by post compressed plates-a review

  • Wang, L.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.477-490
    • /
    • 2018
  • Reinforced concrete (RC) columns, as the primary load-bearing structural components in buildings, may need to be strengthened due to material deteriorations, changes in usage, new building codes or new design requirements. The use of post compressed plates (PCP) to strengthen existing RC columns has been proven experimentally and practically to be effective in solving stress-lagging effects between the original column and the new strengthening jacket caused by the pre-existing loads. This paper presents a comprehensive summary and review of PCP strengthening techniques to strengthen preloaded RC columns. The failure mode, deformability, and ductility of the strengthened RC columns are reviewed.

Analysis-oriented model for seismic assessment of RC jacket retrofitted columns

  • Shayanfar, Javad;Omidalizadeh, Meysam;Nematzadeh, Mahdi
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.371-390
    • /
    • 2020
  • One of the most common strategies for retrofitting as-built reinforced concrete (RC) columns is to enlarge the existing section through the application of a new concrete layer reinforced by both steel transverse and longitudinal reinforcements. The present study was dedicated to developing a comprehensive model to predict the seismic behavior of as-built RC jacketed columns. For this purpose, a new sectional model was developed to perform moment-curvature analysis coupled by the plastic hinge method. In this analysis-oriented model, new methodologies were suggested to address the impacts of axial, flexural and shear mechanisms, variable confining pressure, eccentric loading, longitudinal bar buckling, and varying axial load. To consider the effective interaction between core and jacket, the monolithic factor approach was adopted to extent the response of the monolithic columns to that of a respective RC jacket strengthened column. Next, parametric studies were implemented to examine the effectiveness of the main parameters of the RC jacket strategy in retrofitting as-built RC columns. Ultimately, the reliability of the developed analytical model was validated against a series of experimental results of as-built and retrofitted RC columns.

TOWARDS A RELATIONAL CONTRACTING FRAMEWORK IN THE AUSTRALIAN CONSTRUCTION INDUSTRY: AN INITIAL FRAMEWORK

  • Melissa Chan;Bambang Trigunarsyah;Vaughan Coffey
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.117-123
    • /
    • 2011
  • The Australian construction industry is characterized as being a competitive and risky business environment due to lack of cooperation, insufficient trust, ineffective communication and adversarial relationships which are likely lead to poor project performance. Relational contracting (RC) is advocated by literature as an innovative approach to improve the procurement process in the construction industry. Various studies have collectively added to the current knowledge of known RC norms, but there seem to be little effort on investigating the determinants of RC and its impact on project outcomes. In such circumstances, there is lack of evidence and explanation on the manner on how these issues lead to different performance. Simultaneously, the New Engineering Contract (NEC) that embraced the concept of RC is seen as a modern way of contracting and also considered as one of the best approaches to the perennial problem of improving adversarial relationships within the industry. The reality of practice of RC in Australia is investigated through the lens of the NEC. A synthesis of literature views on the concept, processes and tools of RC is first conducted to develop the framework of RC. A case study approach is proposed for an in-depth analysis to explore the critical issues addressed by RC in relation to project performance. Understanding the realities of RC will assist stakeholders in the construction industry with their investment in RC.

  • PDF

Seismic Capacity Evaluation of Low-Rise Reinforced Concrete Buildings in Korea (국내 저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok;Kim, Yong-In;Min, Kyung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.241-244
    • /
    • 2008
  • The authors proposed a new rapid-screening method for more reasonably evaluating seismic capacities of medium and low-rise RC buildings controlled by both shear and flexure in Ref. [1]. The method proposed in Ref. [1] was based on relationships between required strengths of each failure system for ductility factors and damage degrees of overall system derived from the view-point of ductility factors. The proposed method was also verified using observed real damage data of low-rise RC buildings caused by past earthquakes. Results indicated that the methodology proposed in Ref. [1] compares well with real damages and is a useful strategy for rapidly identifying low-rise RC buildings having high potential seismic risk. In this study, in order to verify the applicability of the new methodology proposed in Ref. [1] to real RC building systems, seismic capacities of existing eleven low-rise RC buildings in Korea are evaluated based on the new method.

  • PDF

An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method under Loading Patterns (격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 하중가력패턴에 따른 구조성능평가)

  • Moon, Hong Bi;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.29-37
    • /
    • 2022
  • The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.

RC Tree Delay Estimation (RC tree의 지연시간 예측)

  • 유승주;최기영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.209-219
    • /
    • 1995
  • As a new algorithm for RC tree delay estimation, we propose a $\tau$-model of the driver and a moment propagation method. The $\tau$-model represents the driver as a Thevenin equivalent circuit which has a one-time-constant voltage source and a linear resistor. The new driver model estimates the input voltage waveform applied to the RC more accurately than the k-factor model or the 2-piece waveform model. Compared with Elmore method, which is a lst-order approximation, the moment propagation method, which uses $\pi$-model loads to calculate the moments of the voltage waveform on each node of RC trees, gives more accurate results by performing higher-order approximations with the same simple tree walking algorithm. In addition, for the instability problem which is common to all the approximation methods using the moment matching technique, we propose a heuristic method which guarantees a stable and accureate 2nd order approximation. The proposed driver model and the moment propagation method give an accureacy close to SPICE results and more than 1000 times speedup over circuit level simulations for RC trees and FPGA interconnects in which the interconnect delay is dominant.

  • PDF

Effect of GGBFS on time-dependent deflection of RC beams

  • Shariq, M.;Abba, H.;Prasad, J.
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • The paper presents the experimental investigations for studying the effect of ground granulated blast furnace slag (GGBFS) on the time-dependent deflection of reinforced concrete (RC) beams due to creep and shrinkage. The RC beams were reinforced with 2-10 mm bars at tension side and subjected to constant sustained two-point loading for the period of 150 days. The amount of cement replacement by GGBFS was varied from 0 to 60% with an increment of 20%. The total deflection was measured at different ages of up to 150 days under sustained loads. The experiments revealed that the time-dependent deflection of the reinforced concrete RC beams containing GGBFS was higher than that of plain concrete RC beams. At 150 days, the average creep and shrinkage deflection of RC beams containing 20%, 40% and 60% GGBFS was 1.25, 1.45 and 1.75 times higher than the plain concrete beams. A new model, which is an extension of authors' earlier model, is proposed to incorporate the effect of GGBFS content in predicting the long-term deflection of RC beams. Besides validating the new model with the current data with higher percentage of tension reinforcement, it was also used to predict the authors' earlier data containing lesser percentage of tension reinforcement with reasonable accuracy.