• Title/Summary/Keyword: New steel

Search Result 2,597, Processing Time 0.025 seconds

OVERVIEW OF STEEL INDUSTRY AND WELDING RESEARCH IN KOREA

  • Rhee, Chang-Hee
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.49-52
    • /
    • 2002
  • From virtually no steel production after the Koran war, steel industry in Korea had a phenomenal growth to reach crude steel production of 40 million tons level in 1997 and became the 6th largest steel producer in the world. The growth owes to steel technologies developed elsewhere over centuries and decisive management decisions to adopt new technologies as quickly as possible. Steel technologies are reviewed and brief overviews of welding research in Korea are presented.

  • PDF

The Structural Characteristics of Non-slip Device in Connecting Method Between Steel Pipe Pile and Footing (미끌림 방지턱을 이용한 강관말뚝 머리 결합부의 구조특성에 관한 실험적 연구)

  • 박영호;김낙영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.227-243
    • /
    • 2003
  • To find the structural characteristics of non-slip device in connecting method B between steel pipe pile and concrete footing, compression and uplift test was performed for full sized specimens not having non-slip device, those having non-slip device with two curved steel plate bars welded inside the steel pipe pile(standard method), and those having non-slip device with serveral curved steel plate bars bolted inside the steel pipe pile(new method). As a result, specimens not having non-slip device had chemical debonding failure at 15.6tonf of peak uplift load and 27.57tonf of peak compression load. And the standard method and the new method showed about 8.9 times of peak uplift load and 6.2 times of peak compression load higher than specimens not having non-slip device. The load transfers of lower non-slip devices of the standard method and the new method were similar in behavior, while the higher non-slip device of the new method showed higher ratio of load transfer than that of the standard method. And these two methods had nearly the same composite action and structural capacity caused by non-slip devices.

Study on the performance of concrete-filled steel tube beam-column joints of new types

  • Liu, Dianzhong;Li, Hongxian;Ren, Huan
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.547-563
    • /
    • 2020
  • In this paper, the influence of axial compression ratio on the mechanical properties of new type joints of side span of rectangular concrete-filled steel tubular column-H-type steel beam is studied. Two new types of side-span joints of rectangular concrete-filled steel tubular column-H-type steel beam are designed and quasi-static tests of five new type joints with 1:2 scale reduction ratios are performed. The axial compression ratio of joint JD1 is 0.3, 0.4 and 0.5, and the axial compression ratio of joint JD2 is 0.3 and 0.5. In the joint test, different axial forces were applied to the top of the column according to different axial compression ratios, and low-cyclic reciprocating load was applied on the beam. The stress and strain distribution, beam and column deformation, limit state, failure process, failure mechanism, stiffness degradation, ductile deformation and energy dissipation capacity of the joint were measured and analyzed. The results show that: with the increase of axial compression ratio, the ultimate bearing capacity of the joint decreases slightly, the plastic deformation decreases, and the stiffness and ductility decrease. According to the energy dissipation curve of the specimen, the equivalent damping coefficient also increases with the increase of axial compression ratio in a certain range, indicating that the increase of axial compression ratio can improve the seismic performance of the joint to a certain extent. The finite element method is used to simulate the joint test, and the test results are in good agreement with the simulation results.

The Effect of Solution Treatment on Intergranular Corrosion Resistance of a New Type Ultra Low Carbon Stainless Steel

  • Julin, Wang;Nannan, Ni;Qingling, Yan;Lingli, Liu
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.140-146
    • /
    • 2007
  • In the paper, with corrosion velocity measurement and metallographic observation on specimens after sulfuric acid/ferric sulfate boiling experiment, intergranular corrosion tendency of the new type ultra low carbon stainless steel developed by ourselves which experienced solution treatment at different temperatures was evaluated. A VHX 500 super depth field tridimensional microscope was used to observe corrosion patterns on the sample surfaces. The depth and width of grain boundary corrosion groove were measured by the tridimensional microscope, which indicated that the corrosion degrees of the samples which received solution treatment at different temperatures are quite different. Transgranular corrosion at different degree occurred along with forged glide lines. After comparison it was proved that the stainless steel treated at $1100^{\circ}C$ performs very well against intergranular corrosion.

New PCBN for Heavy Interrupted Cutting of Hardened Steel

  • Okamura, Katsumi;Kukino, Satoru;Fukaya, Tomohiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.873-874
    • /
    • 2006
  • PCBN tools are used worldwide for machining of hardened steel parts in automotive industries. But in heavy interrupted cutting of hardened steel, the tool life is not so stable by sudden breakage of the cutting edge, and total cost of cutting by PCBN is not so economical compared to the grinding. To solve this problem, new PCBN has been developed. New PCBN has very fine and homogeneous microstructure to increase the toughness of sintered body that it provides a reliable tool life for heavy interrupted cutting.

  • PDF

A Study on the New Type Rib of Steel Deck Plates (새로운 형태의 강바닥판 리브에 대한 연구)

  • Chu, Seok Beom;Park, Jong Hae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.605-615
    • /
    • 2014
  • The purpose of this study is to propose an economic new type rib by applying plate stiffening methods of the corrugated plate and the honey-comb sandwich panel to the steel deck plate and comparing the new type rib with existing open and closed ribs. The trapezoidal corrugated type, ㄹ type, honey-comb type and ㅁ type ribs are considered as new type ribs and the moment and the steel volume are compared with that of open ribs and closed ribs. The results shows that the honey-comb type and ㅁ type ribs are good in aspects of economic feasibility and the ㅁ type is better than the honey-comb type. To make the ㅁ type rib applicable to the steel deck plate, the sensitivity analysis and parametric study are performed and the system to select the proper section under the particular stress condition is established. The closed rib of real bridges is compared with the ㅁ type rib of the proposed system and it is known that the new type rib is more economic. Therefore, more economic steel deck plates can be achieved by using the system proposed in this study for the plate stiffened with the new ㅁ type rib.

Experimental Evaluation of New Seismic Connections between Rectangular Steel Tube Column and H-shaped Beam (각형강관 기둥-H형강 보 신형상 내진접합부의 실험적 평가)

  • Jin, Jooho;Kim, DooHwan;Kim, Hyunsook;Shin, Jinwon;Park, Kooyun;Lee, Kyungkoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • A through diaphragm is often used to ensure their stiffness for moment-resisting connections using rectangular steel-tube column and H-shaped beam. The through-diaphragm connections, however, have some difficulties for their applicabilities to the field due to the complexity of the fabrication and construction processes. This study thus proposes a new modular system of steel structures assembled only using bolts without welding, by bringing a connection module composed of rectangular steel-tube column, H-shaped beam and oneway bolt onto the site. An experimental study to evaluate the seismic performance of the proposed connection details based on the new modular system is then conducted. The length and type of the inner reinforcement plate are considered as the primary design parameters, and the strength, stiffness, ductility and energy dissipation capability of the new connections are experimentally analyzed by comparison to those of conventional through diaphragm connections.

Behaviour and design of demountable steel column-column connections

  • Li, Dongxu;Uy, Brian;Patel, Vipul;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.429-448
    • /
    • 2016
  • This paper presents a finite element (FE) model for predicting the behaviour of steel column-column connections under axial compression and tension. A robustness approach is utilised for the design of steel column-column connections. The FE models take into account for the effects of initial geometric imperfections, material nonlinearities and geometric nonlinearities. The accuracy of the FE models is examined by comparing the predicted results with independent experimental results. It is demonstrated that the FE models accurately predict the ultimate axial strengths and load-deflection curves for steel column-column connections. A parametric study is carried out to investigate the effects of slenderness ratio, contact surface imperfection, thickness of cover-plates, end-plate thickness and bolt position. The buckling strengths of steel column-column connections with contact surface imperfections are compared with design strengths obtained from Australian Standards AS4100 (1998) and Eurocode 3 (2005). It is found that the column connections with maximum allowable imperfections satisfy the design requirements. Furthermore, the steel column-column connections analysed in this paper can be dismantled and reused safely under typical service loads which are usually less than 40% of ultimate axial strengths. The results indicate that steel column-column connections can be demounted at 50% of the ultimate axial load which is greater than typical service load.

Thermo-mechanical compression tests on steel-reinforced concrete-filled steel tubular stub columns with high performance materials

  • David Medall;Carmen Ibanez;Ana Espinos;Manuel L. Romero
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.533-546
    • /
    • 2023
  • Cost-effective solutions provided by composite construction are gaining popularity which, in turn, promotes the appearance on the market of new types of composite sections that allow not only to take advantage of the synergy of steel and concrete working together at room temperature, but also to improve their behaviour at high temperatures. When combined with high performance materials, significant load-bearing capacities can be achieved even with reduced cross-sectional dimensions. Steel-reinforced concrete-filled steel tubular (SR-CFST) columns are one of these innovative composite sections, where an open steel profile is embedded into a CFST section. Besides the renowned benefits of these typologies at room temperature, the fire protection offered by the surrounding concrete to the inner steel profile, gives them an enhanced fire performance which delays its loss of mechanical capacity in a fire scenario. The experimental evidence on the fire behaviour of SR-CFST columns is still scarce, particularly when combined with high performance materials. However, it is being much needed for the development of specific design provisions that consider the use of the inner steel profile in CFST columns. In this work, a new experimental program on the thermo-mechanical behaviour of SR-CFST columns is presented to extend the available experimental database. Ten SR-CFST stub columns, with circular and square geometries, combining high strength steel and concrete were tested. It was seen that the circular specimens reached higher failure times than the square columns, with the failure time increasing both when high strength steel was used at the embedded steel profile and high strength concrete was used as infill. Finally, different proposals for the reduction coefficients of high performance materials were assessed in the prediction of the cross-sectional fire resistance of the SR-CFST columns.

New Energy Saving Technology of Electric Arc Furnace in Steel Making Industry (철강산업체 전기로(EAF) 설비에서 에너지절약 최신기술동향)

  • Oh, Dong-Whan;Park, Hyun-Kyu;Park, Tae-Joon;Im, Sang-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.71-73
    • /
    • 2003
  • The paper discussed for energy saving technology of electric arc furnace (EAF) in steel making industry. The energy of EAF in steel making process is nearly 10% of total manufacturing cost. This paper is shown new trand of energy saving technology and future study analysis of technological evolution of the EAF by 2010 issued IISI.

  • PDF