• Title/Summary/Keyword: New renewable energy system

Search Result 1,388, Processing Time 0.027 seconds

Analysis of Solid Oxide Fuel Cell/Oxy-fuel Combustion Power Generation System Using Oxygen Separation Technology (산소분리기술을 사용한 연료전지/순산소연소 발전시스템 해석)

  • Park, Sung-Ku;Kim, Tong-Seop;Sohn, Jeong-Lak;Lee, Young-Duk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-54
    • /
    • 2008
  • This study aims to devise and analyze a power generation system combining the solid oxide fuel cell and oxy-fuel combustion technology. The fuel cell operates at an elevated pressure, a constituting a SOFC/gas turbine hybrid system. Oxygen is extracted from the high pressure cathode exit gas using ion transport membrane technology and supplied to the oxy-fuel power system. The entire system generates much more power than the fuel cell only system due to increased fuel cell voltage and power addition from oxy-fuel system. More than one third of the power comes out of the oxy-fuel system. The system efficiency is also higher than that of the fuel cell only system. Recovering most of the generated carbon dioxide is major advantage of the system.

  • PDF

A Study on the Reset of Examination Criteria for Energy Use Plan through Consultation Case Analysis (협의 사례 분석을 통한 에너지사용계획 검토기준 재설정 연구)

  • Suh, Kwang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.59-69
    • /
    • 2013
  • The Consultation about Energy Use Plan is prescribed by the Energy Use Rationalization Act. In order to reset Examination Criteria for Energy Use Plan, consultation case analysis from 2001 to 2010 were carried out and National Energy Master Plan was reviewed. This study proposes that Examination Criteria for Energy Use Plan be should divided into Urban & Tourism complex development project and Industrial complex development project for the prevention of civil complain. Also predicts that effect of energy savings calculated by Reset Examination Criteria on $1^{ST}$ energy demand BAU at 2030 is 2.2%, effect of new & renewable energy utilization at 2030 is 3% and the rate of $CO_2$ reduction to greenhouse gas emission BAU at 2020 is 1.1%.

Geothermal Effects on the Underground Water Conveyance Pipe System from Han River (한강수계 광역상수도 원수관의 지열 영향 조사)

  • Cho, Yong;Park, Jin-Hoon;Park, Tae Jin;Kim, Youngjoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.171.2-171.2
    • /
    • 2010
  • Geothermal effects on the underground water conveyance pipe system have been investigated through the multiregional water supply system from Paldang water intake station. To make an investigation of raw water thermal energy, temperature sensors are installed the surface of the pipes of metropolitan area water supply system. In 2009 winter and early spring seasons, the monthly averaged temperatures at Paldang 2 intake stations are $1.94^{\circ}C$ in February, $4.96^{\circ}C$ in March, and $10.56^{\circ}C$ in April. After the transfer in 26.0 km distance of tunnel and buried pipe, the raw water temperatures are raised to $3.13^{\circ}C$, $6.04^{\circ}C$, and $11.39^{\circ}C$ respectively. As the temperature difference between the raw water and the air reduces, the temperature increasement is reduced by $1.19^{\circ}C$ in Feb., $1.08^{\circ}C$ in Mar., and $0.83^{\circ}C$ in Apr. Since the flowrate is over 1,150,000 $m^3$/day, it is estimated that the water exchanges a huge amount of heat over 1.0 Tcal a day with the ground.

  • PDF

Application study of heat storage type GSHP system in Apartment building with central cooling and heating facilities using life cycle cost analysis (LCC 분석을 이용한 중앙공급식 공동주택의 수축열식 지열원 히트펌프시스템의 적용연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Cho, Sung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1497-1502
    • /
    • 2009
  • The present study has been conducted economic analysis of heat storage type ground source heat pump system(HSGSHP) and normal ground source heat pump (GSHP) and central boiler system with individual air conditioning facility which are installed at the same building in the shared an apartment house. Cost items, such as initial construction cost, annual energy cost and maintenance cost of each system are considered to analyze life cycle cost (LCC) and simple payback period (SPP) with initial cost different are compared. The initial cost is a rule to the Government basic unit cost of production. LCC applied present value method is used to assess economical profit of both of them. Variables used to LCC analysis are prices escalation rate and interest rate mean values of during latest 10 years. The LCC result shows that HSGSHP (1,351,000,000won) is more profitable than central boiler system with individual air conditioning facility by 86.7% initial cost. And SPP appeared 8.0 year overcome the different initial cost by different annual energy cost.

  • PDF

A study on the power conversion system using Dye-Sensitized Solar cell (DSC를 활용한 상용전력변환 시스템에 관한 연구)

  • Kim, Jin-Young;Park, Sung-June;Park, Hae-Young;Kim, Woo-Sung;Kim, Hwi-Young;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.195-198
    • /
    • 2006
  • The technology of Solar Power conversion System is defined as a solar cell that changes the sol ar energy into the direct electric energy, power conversion and control technology that convert the dc power into ac power The solar cell module, power conversion, and a control part in component parts consisting a solar power conversion system have influence on its performance. The roles of power conversion and a control part supply the direct current generated by solar cell module for a load with high efficiency as conveniently as possible in this study, the power conversion systen that can generate solar power using DSC module was developed and its characteristics was experimented. The characteristics of the DSC power conversion system including MOSFET and DSP micro processor, high speed devices, was simulated using Psim. According to the results, converter and inverter was manufactured in detail and the performance characteristics were studied.

  • PDF

Biogas-Microturbine Distributed Generation Developement at Gong-Ju Public Livestock Wastewater Treatment Facility (공주 축산폐수공공처리장에서의 바이오가스-마이크로터빈 분산발전시스템 개발)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Lee, Ki-Chul;Kang, Ho;Rhim, Sang-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.229-234
    • /
    • 2008
  • Korea Electric Power Corporation (KEPCO) has started the nation's first biogas-microturbine project in the city of Gongju as an effort to encourage the utilization of wasted biogas containing useful energy source in the form of $CH_4$. The goal of the project is to set up the biogas microturbine co-generation system for utilizing biogas as an energy source and improving the economics of the wastewater treatment plant. Wastewater treatment processes were investigated in depth to find improvement possibility. Changes in internal recirculation ratio and pre-treatment degree are needed to optimize plant operation and biogas production. Biogas pre-treatment system satisfies Capstone's fuel condition requirement with the test result of 99.9% and 90.2% of hydrogen sulphide and ammonia is removal performance. Installation of microturbine and manufacture of heat exchanger to warm anaerobic digester has been done successfully. Expected economic profit produced by the system is coming from energy saving including electricity 115,871kWh/year and heat contained in exhaust gas 579GJ/year.

  • PDF

Miniature planar stack using the flexible Printed Circuit Board as current collectors (연성 기판을 전류 집전체로 사용한 평판형 연료전지 스택)

  • Kim, Sung-Han;Cha, Hye-Yeon;Miesse, Craig M.;Cha, Suk-Won;Jang, Jae-Hyuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.1-4
    • /
    • 2008
  • Fuel cells have the potential of providing several times higher energy storage densities than those possible using current state-of-the-art lithium-ion batteries, but current energy density of fuel cell system is not better than that of lithium-ion batteries. To achieve the high energy density, volume and weight of fuel cell system need to be reduced by miniaturizing system components such as stack, fuel tank, and balance-of-plant. In this paper, the thin flexible PCB (Printed circuit board) is used as a current collector to reduce the stack volume. Two end plates are made from light weight aluminum alloy plate. The plate surface is wholly oxidized through the anodizing treatment for electrical insulation. The opening rate of cathode plate hole is optimized through unit cell performance measurement of various opening rates. The performances are measured at room temperature and ambient pressure condition without any repulsive air supply. The active area of MEA is 10.08 $cm^2$ and active area per a unit cell is 1.68 $cm^2$. The peak power density is about 210 mW/$cm^2$ and the air-breathing planar stack of 2 Wis achieved as a small volume of 18 cc.

  • PDF

Microbial Enrichment and Community Analysis for Bioelectrochemical Acetate Production from Carbon Dioxide (이산화탄소로부터 생물전기화학적 아세트산 생산을 위한 미생물 농화배양 및 군집 분석)

  • Kim, Junhyung;Kim, Young-Eun;Park, Myeonghwa;Song, Young Eun;Seol, Eunhee;Kim, Jung Rae;Oh, You-Kwan
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • Microbial electrosynthesis has recently been considered a potentially sustainable biotechnology for converting carbon dioxide (CO2) into valuable biochemicals. In this study, bioelectrochemical acetate production from CO2 was studied in an H-type two-chambered reactor system with an anaerobic microbial consortium. Metal-rich mud flat was used as the inoculum and incubated electrochemically for 90 days under a cathode potential of -1.1 V (vs. Ag/AgCl). Four consecutive batch cultivations resulted in a high acetate concentration and productivity of 93 mmol/L and 7.35 mmol/L/day, respectively. The maximal coulombic efficiency (rate of recovered acetate from supplied electrons) was estimated to be 64%. Cyclic voltammetry showed a characteristic reduction peak at -0.2~-0.4 V, implying reductive acetate generation on the cathode electrode. Furthermore, several electroactive acetate-producing microorganisms were identified based on denaturing- gradient-gel-electrophoresis (DGGE) and 16S rRNA sequence analyses. These results suggest that the mud flat can be used effectively as a microbial source for bioelectrochemical CO2 conversion.

Single Phase 5-level Inverter with DC-link Switches (DC링크 스위치를 갖는 단상 5레벨 인버터)

  • Choi, Young-Tae;Sun, Ho-Dong;Park, Min-Young;Kim, Heung-Geun;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.283-292
    • /
    • 2011
  • This paper proposed a new multi-level inverter topology based on a H-bridge with two switches and two diodes connected to the DC-link. The output voltage of the proposed topology is quite closer to a sinusoidal waveform compared with a typical single phase inverter. The proposed multi-level inverter is applicable to a power conditioning system for renewable energy sources, and it can be also used as a building block of a cascaded multi-level inverter for a high voltage application. In case of conventional H-bridge type or NPC type multi-level inverter, 8 controllable switches are used to obtain a 5 level output voltage, but the proposed multi-level inverter requires only 6 controllable switches. Thus the circuit configuration is quite simple, reliable and cost-effective implementation is possible. The efficiency can be improved owing to the reduction of the switching loss. A new PWM method based on POD modulation is suggested which requires only one carrier signal. The switching sequence to make the capacitor voltage balanced is also considered. The feasibility is studied through simulation and experiment.

Design Study of a Brazed Plate Heat Exchanger Condenser Through Two-Phase Flow Analysis (이상유동 해석을 통한 브레이징 판형 응축기 설계 연구)

  • Hwang, Dae-jung;Oh, Cheol;Park, Sang-kyun;Jee, Jae-hoon;Bang, Eun-shin;Lee, Byeong-gil
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.73-81
    • /
    • 2022
  • This study was aimed at designing a condenser, as a component of the organic Rankine cycle system for ships. The condenser was manufactured through press molding to achieve a bent shape to enhance the heat transfer performance, considering the shape of the heat transfer plate used in a brazing plate heat exchanger. The heat transfer plate was made of copper-nickel alloy. The required heat transfer rate for the condenser was 110 kW, and the maximum number of layers was set as 25, considering the characteristics of high-temperature brazing. Computational fluid dynamics techniques were used to perform the thermal fluid analysis, based on the ANSYS CFX (v.18.1) commercial program. The heat transfer rate of the condenser was 4.96 kW for one layer (width and length of 0.224 and 0.7 m, respectively) of the heat transfer exchanger. The fin efficiency pertaining to the heat transfer plate was approximately 20%. The heat flow analysis for one layer of the heat exchanger plate indicated that the condenser with 25 layers of heat transfer plates could achieve a heat transfer rate of 110 kW.