• 제목/요약/키워드: New manufacturing process

검색결과 1,529건 처리시간 0.029초

Industry 4.0 - A challenge for variation simulation tools for mechanical assemblies

  • Boorla, Srinivasa M.;Bjarklev, Kristian;Eifler, Tobias;Howard, Thomas J.;McMahon, Christopher A.
    • Advances in Computational Design
    • /
    • 제4권1호
    • /
    • pp.43-52
    • /
    • 2019
  • Variation Analysis (VA) is used to simulate final product variation, taking into consideration part manufacturing and assembly variations. In VA, all the manufacturing and assembly processes are defined at the product design stage. Process Capability Data Bases (PCDB) provide information about measured variation from previous products and processes and allow the designer to apply this to the new product. A new challenge to this traditional approach is posed by the Industry 4.0 (I4.0) revolution, where Smart Manufacturing (SM) is applied. The manufacturing intelligence and adaptability characteristics of SM make present PCDBs obsolete. Current tolerance analysis methods, which are made for discrete assembly products, are also challenged. This paper discusses the differences expected in future factories relevant to VA, and the approaches required to meet this challenge. Current processes are mapped using I4.0 philosophy and gaps are analysed for potential approaches for tolerance analysis tools. Matching points of simulation capability and I4.0 intents are identified as opportunities. Applying conditional variations, incorporating levels of adjustability, and the un-suitability of present Monte Carlo simulation due to changed mass production characteristics, are considered as major challenges. Opportunities including predicting residual stresses in the final product and linking them to product deterioration, calculating non-dimensional performances and extending simulations for process manufactured products, such as drugs, food products etc. are additional winning aspects for next generation VA tools.

신규열차 도입시의 안전관리에 관한 연구 (A Study on the Safety Management for the Introduction of New Trains)

  • 한석윤;윤성철;이병송
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.422-428
    • /
    • 2001
  • This paper provides a brief overview of the process for the introduction of new train in England since privatization in 1994. They have railway safety case which the safety management for the introduction of new trains is to be considered in all process including design, manufacturing, test, maintenance etc. To achieve safety in track, they also consider evidence available from the design and build process.

  • PDF

실사이드 부품의 롤포밍공정에서 고주파유도가열 부가조건에 따른 기계적 특성 및 미세조직 평가 (Characteristics of Mechanical Properties and Micro Structure according to High-Frequency Induction Heating Conditions in Roll Forming Process of a Sill Side Part)

  • 김근영;최이존;신현일;조준행;이창훈;강명창
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.87-94
    • /
    • 2017
  • Hot stamping processes are possible for tensile strength 1.4 GPa but the strength reduction is appeared from the cooling performance unbalance. And the strength of roll forming process is below than that of hot stamping process owing to using the steel which is lower strength of boron steel. In this study, We provide roll forming process asssisted high-frequency induction heating to solve the problem of conventional one. The experiments were carried out at under various sill side part conditions: high-frequency induction heating conditions of 15, 18, 21, 24, 27 and 30 kW. The high-frequency induction heating temperature was checked with Infrared camera and the sill side parts of mechanical properties and microstructure were measured. The heating temperature of high frequency induction was measured to max $850^{\circ}C$ under the coil power of 30 kW. The tensile strength was 1.5 GPa and hardness was 490 Hv. The martensite structure was discovered under coil power of 30 kW. The weight of steel material sill side having thickness 1.5 mm and the boron steel sill side having thickness 1.2 mm were compared to weight effect. The boron steel sill side reduced 11.5% compared to steel. Consequently, manufacturing process of 1.5 giga-grade's sill side part was successfully realized by the roll forming assisted high-frequency induction heating methods.

제조방법을 달리한 경옥고의 고콜레스테롤혈증 흰쥐에 미치는 효능 비교 연구 (Lipid Improvement Effect of New manufacturing method produced Kyeongok-go on hyperlipidemia rats)

  • 최웅식;구가람;이아름;권오준;서영배
    • 대한본초학회지
    • /
    • 제32권3호
    • /
    • pp.9-17
    • /
    • 2017
  • Objectives : Kyeongok-go has the effect of antioxidant, anti-cancer, improving fatigue, and hyperlipidemia, but it is not easy to use in clinical practice becausee of the complicated manufacturing process of heat control and moisture control. The aim of this study was to explore the lipid improvement effect of new manufacturing methods prodeced Kyeongok-go in hyperlipidemia rats. Methods : The SD rats were divided randomly into 8 groups of six animals each : Normal rats (Nor), hyperlipidemia rats (Con), hyperlipidemia rats treated with Spirulina 60 mg/kg(SP60), hyperlipidemia rats treated with Commercial Kyeongok-go 1 g/kg (K0), hyperlipidemia rats treated with Kyeongok-go manufactured by heating mantle 1 g/kg (K1), hyperlipidemia rats treated with ginseng fermentation Kyeongok-go 1 g/kg (KF), hyperlipidemia rats treated with Kyeongok-go with black ginseng 1 g/kg (BK), hyperlipidemia rats treated with black ginseng fermentation Kyeongok-go 1 g/kg (BKF). The experimental group induced hyperlipidemia by eating high cholesterol diet for 8 weeks. Also, we compared Kyeongok-go manufacturing method using the new method compared with traditional method. Results : As a result, the improvement effect of hyperlipemia using the new method showed the similar or better improvement effect compared with the conventional method, and it is considered that the Kyeongok-go manufacturing method using the new method can be substituted for the traditional Kyeongok-go manufacturing method. Conclusion : In conclusion, these results suggest that new manufacturing methods prodeced Kyeongok-go has the potential as a anti-hyperlipidemia material which possess lipid improvement activities.

탄소섬유복합재료의 시트크로스 부품에서 진공수지주입성형에 의한 성형성 평가 (Formability Evaluation of the Vacuum Resin Transfer Molding of a CFRP Composite Automobile Seat Cross Part)

  • 김근영;곽성훈;한규동;박진석;조준행;이창훈;강명창
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.24-29
    • /
    • 2017
  • In this study, a seat cross member was fabricated by optimizing the resin transfer molding processing of CFRP (Carbon Fiber Reinforced Plastics) materials. This seat cross member is used in automotive underbody parts and provides side impact support. The seat cross was manufactured via vacuum resin transfer molding. The process included 1min of resin injection, 8 mins of heating, and 1 min of cooling, for a total molding time of 10mins. Tensile test results showed an average breaking load of 21.50kN, a tensile strength of 404 MPa, and an elastic modulus of 46.2 GPa. As a result, the CFRP seat cross provides the same strength as a similar steel part, but weighs 42% less.

건식 저온 압축 공기를 이용한 절삭유 대체형 가공 공정 방식에 관한 연구 (A Study on the Environment Conscious Machining Process Using Compressed Dry Cooling Air)

  • 강재훈;송준엽;박종권;노승국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.129-132
    • /
    • 2003
  • Used cutting fluid from machining processes is harmful to both environment and human health. Chemical substances that provide the lubrication function in the machining process are toxtc to the environment if the cutting fluid is released to soil and water and caused serious health problems to workers who are exposed to the cutting fluid in both liquid and mist form. Recently. cost of using cutting fluid is increasing as the number and the extensiveness of environmental protection laws and regulations increase. Therefore, the use of cutting fluid in machining processes place an enormous burden on manufacturing companies to cover the additional costs associated with their use and protection of our environment. Current trends in manufacturing are focused on minimizing or eliminating the use of metalworking fluids in machining processes. And the increased costs for the disposal of waste products (swarf, coolants and lubricants), especially in industrially developed countries, has generated interest in dry machining. A variety of new techniques are testimony that new technology has rationalized further efforts to research and implement dry machining processes. This paper presents the developed equipment, the process optimization and the applications in the field of surface grinding for the new cryogenic dry machining using a compressed cooling air. The investigated new machining process method shows many advantages compared to conventional techniques with cutting fluid.

  • PDF

Heterarchical SFCS 를 위한 가공기계의 Planner 모듈 개발 (Development of a planner of processing equipments for heterarchical SFCS)

  • 김화진;조현보;정무영
    • 대한산업공학회지
    • /
    • 제22권4호
    • /
    • pp.719-739
    • /
    • 1996
  • A common control model used to implement computer integrated manufacturing(CIM) is based on the hierarchical decomposition of the shop floor activities, in which supervisory controllers are responsible for all the interactions among subordinates. Although the hierarchical control philosophy provides for easy understanding of complex systems, an emerging manufacturing paradigm, agile manufacturing, requires a new control structure necessary to accommodate the rapid development of a shop floor controller. This is what is called autonomous agent-based heterarchical control. As computing resources and communication network on the shop floor become increasingly intelligent and powerful, the new control architecture is about to come true in a modern CIM system. In this paper, heterarchical control is adopted and investigated, in which a controller for a unit of device performs three main functions - planning, scheduling and execution. Attention is paid to the planning function and all the detailed planning activities for heterarchical shop floor control are identified. Interactions with other functions are also addressed. In general, planning determines tasks to be scheduled in the future. In other words, planning analyzes process plans and transforms process plans into detailed plans adequate for shop floor control. Planning is also responsible for updating a process plan and identifying/resolving replanning activities whether they come from scheduling or execution.

  • PDF

밀리부품의 정밀도 향상을 위한 다단계 성형 및 금형 해석 (Multi-Stage Forming Analysis of a Milli-Component for Improvement of Forming Accuracy)

  • 윤종헌;허훈;김승수;나경환;박훈재;최태훈
    • 소성∙가공
    • /
    • 제13권5호
    • /
    • pp.429-434
    • /
    • 2004
  • Manufacturing process for milli components has recently gained researcher's focus with the increasing tendency toward highly integrated and micro-scaled parts for electronic devices. The milli-components need more precise manufacturing process than the conventional manufacturing process since the parts require higher dimensional accuracy than the conventional ones. In order to enhance the forming accuracy and productivity, various forming procedures proposed and studied by many researchers. In this paper, forming analysis of milli-components has been studied with a new micro-former. In modeling of progressive dies, multi-stage forming sequence has been analyzed with finite element analysis by LS-DYNA3D. The analysis proposes the sequential die and part shapes with the corresponding punch force and dimensional accuracy. The analysis also considers the effect of elastic dies on the dimensional accuracy of the formed parts. The analysis result demonstrates that the elastic analysis in the milli-forming process is indispensable for accurate forming analysis. The analysis procedure in the paper will provide good information in design of a new micro-former and milli-component

휴리스틱 방법을 활용한 고객 생애 가치에 대한 단일 업체 일정계획 수립에 관한 연구 (A Study on Determining Single-Center Scheduling for LTV(LifeTime Value) Using Heuristic Method)

  • 양광모;강경식
    • 대한안전경영과학회지
    • /
    • 제5권1호
    • /
    • pp.83-92
    • /
    • 2003
  • Scheduling plays an important role in shop floor planning. A scheduling shows the planned time when processing of a specific job will start on each machine that the job requires. It also indicates when the job will be completed on every process. Thus, it is a timetable for both jobs and machines. There is only one server available and arriving work require services from this server. Job are processed by the machine one at a time. The most common objective is to sequence jobs on the severs so as to minimize the penalty for being late, commonly called tardiness penalty. Based on other objectives, many criteria may serve as s basis for developing job schedules. The process also comprises all strategic planning, capital investments, management decisions, and tasks necessary to create a new product. manufacturing processes must be created so that the product can be produced in the product facility. Purchasing new equipment and training workers may be required if new technology is to be used. Tools, fixtures, and the sequence of steps in the manufacturing processes must all be developed to allow rapid, high-quality, cost effective production. Also, it may be needed to be rearrange the production facility to adapt to the new manufacturing processes. Therefore, this study tries to proposed that Scheduling by customer needs group for minimizing the problem and reducing inventory, product development time, cycle time, and order lead time.

Development of Flexible Manufacturing System using Virtual Manufacturing Paradigm

  • Kim, Sung-Chung;Park, Kyung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.84-90
    • /
    • 2000
  • The importance of Virtual Manufacturing System is increasing in the area of developing new manufacturing processes, implementing automated workcells, designing plant facility layouts and workplace ergonomics. Virtual manufacturing system is a computer system that can generate the same information about manufacturing system structure, states, and behaviors as is observed in a real manufacturing. In this research, a virtual manufacturing system for flexible manufacturing cells (VFMC), (which is a useful tool for building Computer Integrated Manufacturing (CIM), has been developed using object-oriented paradigm, and implemented with software QUEST/IGRIP. Three object models used in the system are the product model, the facility model, and the process model. The concrete behaviors of a flexible manufacturing cell are re[presented by the task-oriented description diagram, TIC. An example simulation is executed to evaluate applicability of the developed models, and to prove the potential value of virtual manufacturing paradigm.

  • PDF