• Title/Summary/Keyword: New formulation

Search Result 1,079, Processing Time 0.029 seconds

Modelling inelastic hinges using CDM for nonlinear analysis of reinforced concrete frame structures

  • Rajasankar, J.;Iyer, Nagesh R.;Prasad, A. Meher
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.319-341
    • /
    • 2009
  • A new formulation based on lumped plasticity and inelastic hinges is presented in this paper for nonlinear analysis of Reinforced Concrete (RC) frame structures. Inelastic hinge behaviour is described using the principles of Continuum Damage Mechanics (CDM). Member formulation contains provisions to model stiffness degradation due to cracking of concrete and yielding of reinforcing steel. Depending on its nature, cracking is classified as concentrated or distributed. Concentrated cracking is accounted through a damage variable and its growth is defined based on strain energy principles. Presence of distributed flexural cracks in a member is taken care of by modelling it as non-prismatic. Plasticity theory supported by effective stress concept of CDM is applied to describe the post-yield response. Nonlinear quasi-static analysis is carried out on a RC column and a wide two-storey RC frame to verify the formulation. The column is subjected to constant axial load and monotonic lateral load while the frame is subjected to only lateral load. Computed results are compared with those due to experiments or other numerical methods to validate the performance of the formulation and also to highlight the contribution of distributed cracking on global response.

Nonlinear P-Δ analysis of steel frames with semi-rigid connections

  • Valipour, Hamid R.;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.1-20
    • /
    • 2013
  • This paper presents the formulation for a novel force-based 1-D compound-element that captures both material and second order P-${\Delta}$ nonlinearities in steel frames. At the nodal points, the element is attached to nonlinear rotational and a translational springs which represent the flexural and axial stiffness of the connections respectively. By decomposing the total strain in the material as well as the generalised displacements of the flexible connections to their elastic and inelastic components, a secant solution strategy based on a direct iterative scheme is introduced and the corresponding solution strategy is outlined. The strain and slope of the deformed element are assumed to be small; however the equilibrium equations are satisfied for the deformed element taking account of P-${\Delta}$ effects. The formulation accuracy and efficiency is verified by some numerical examples on the nonlinear static, cyclic and dynamic analysis of steel frames.

HYDROPLANING ANALYSIS BY FEM AND FVM - EFFECT OF TIRE ROLLING AND TIRE PATTERN ON HYDROPLANING

  • Nakajima, Y.;Seta, E.;Kamegawa, T.;Ogawa, H.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.26-34
    • /
    • 2000
  • The new numerical procedure for hydroplaning has been developed by considering the following three important factors; fluid/structure interaction, tire rolling, and practical tread pattern. The tire was analyzed by FEM with Lagrangian formulation and the fluid is analyzed by FVM with Eulerian formulation. Since the tire and the fluid are modeled separately and their coupling is automatically computed by the coupling element, the fluid/structure interaction of the complex geometry such as the tire with the tread pattern can be analyzed practically. We verified the predictability of the hydroplaning simulation in the different parameters such as the water flow, the velocity dependence of hydroplaning, and the effect of the tread pattern on hydroplaning. In order to predict the streamline in the contact patch, the procedure of the global-local analysis was developed. Since the streamline could be predicted by this technology, we could develop the new pattern in a short period based on the principle; "make the stream line smooth".

  • PDF

Bending analysis of FGM plates using a sinusoidal shear deformation theory

  • Hadji, Lazreg;Zouatnia, Nafissa;Kassoul, Amar
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.543-558
    • /
    • 2016
  • The response of functionally graded ceramic-metal plates is investigated using theoretical formulation, Navier's solutions, and a new displacement based on the high-order shear deformation theory are presented for static analysis of functionally graded plates. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The plates are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. Numerical results of the new refined plate theory are presented to show the effect of the material distribution on the deflections, stresses and fundamental frequencies. It can be concluded that the proposed theory is accurate and simple in solving the static and free vibration behavior of functionally graded plates.

An efficient four node degenerated shell element based on the assumed covariant strain

  • Choi, Chang-Koon;Paik, Jong-Gyun
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.17-34
    • /
    • 1994
  • This paper proposes a new four node degenerated shell element. In the formulation of the new element, the assumed covariant shear strains are used to avoid the shear locking problem, and the assumed covariant membrane strains are applied to alleviate the membrane locking problem and also to improve the membrane bending performance. The assumed covariant strains are obtained from the covariant strain field defined with respect to the element natural coordinate system. This formulation enables us to obtain a shell element, which does not produce spurious singular modes, avoids locking phenomena, and excels in calculation efficiency. Several examples in this paper indicate that, despite its simplicity, the achieved accuracy and convergence are satisfactory.

A Study on the Optimal Routing Problem for a Transfer Crane (컨테이너 터미널에서의 트랜스퍼 크레인의 최적 운영 방안에 관한 연구)

  • Kim, Hu-Gan;Kim, Chul-Han
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.1
    • /
    • pp.35-49
    • /
    • 2008
  • To load a container in a yard block onto a ship, a Transfer Crane (TC) moves to a target yard bay, then its hoist picks up a selected container and loads it onto a waiting Yard Truck (YT). An optimal routing problem of Transfer Crane is a decision problem which determines a given TC's the visiting sequence of yard-bays and the number of containers to transfer from each yard-bay. The objective is to minimize the travel time of the TC between yard-bays and setup time for the TC in a visiting yard. In this paper, we shows that the problem is NP-complete, and suggests a new formulation for it. Using the new formulation for the problem, we investigate some characteristics of solutions, a lower and upper bounds for it. Moreover, our lower and upper bound is very efficient to applying some instances suggested in a previous work.

Assumed strain finite strip method using the non-periodic B-spline

  • Hong, Hyun-Seok;Kim, Kyeong-Ho;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.671-690
    • /
    • 2004
  • An assumed strain finite strip method(FSM) using the non-periodic B-spline for a shell is presented. In the present method, the shape function based on the non-periodic B-splines satisfies the Kronecker delta properties at the boundaries and allows to introduce interior supports in much the same way as in a conventional finite element formulation. In the formulation for a shell, the geometry of the shell is defined by non-periodic B3-splines without any tangential vectors at the ends and the penalty function method is used to incorporate the drilling degrees of freedom. In this study, new assumed strain fields using the non-periodic B-spline function are proposed to overcome the locking problems. The strip formulated in this way does not posses any spurious zero energy modes. The versatility and accuracy of the new approach are demonstrated through a series of numerical examples.

A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Yeghnem, Redha;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.89-102
    • /
    • 2018
  • This work investigates a novel plate formulation and a modified couple stress theory that introduces a variable length scale parameter is presented to discuss the static and dynamic of functionally graded (FG) micro-plates. A new type of third-order shear deformation theory of Reddy that use only 4 unknowns by including undetermined integral variables is proposed in this study. The equations of motion are derived from Hamilton's principle. Analytical solutions are obtained for a simply supported micro-plate. Numerical examples are presented to examine the effect of the length scale parameter on the responses of micro-plates. The obtained results are compared with the previously published results to demonstrate the correctness of the present formulation.

Lower and Upper Bounding Strategies for the Network Disconnection Problem (네트워크 단절문제에 대한 상한과 하한을 구하는 해법)

  • 김현준;명영수;박성수;오상민
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.1
    • /
    • pp.113-125
    • /
    • 2004
  • The network disconnection problem ms to find a set of edges such that the total cost of removing the edges is no more than a given budget and the weight of nodes disconnected from a designated source by removing edges is maximized. Martel et at. have shown that the problem with unit capacity and unit demand Is NP-hard and Myung and kim present an integer programming formulation and develop an algorithm that Includes a preprocessing procedure and lower and upper bounding strateagies. in this paper, we present new findings on the properties of the optimal solution and an alternative integer programming formulation, based on which new lower and upper bounding strategies are developed. Computational results for evaluating the performance of the proposed algorithm are also presented.

New Formulation of MNDIF Method for Extracting Accurate Natural Frequencies of Plates (평판의 고정밀도 고유진동수 추출을 위한 개선된 MNDIF법 정식 개발)

  • Kang, Sang-Wook;Yoon, Juil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.725-733
    • /
    • 2013
  • An improved formulation of the MNDIF method is introduced to extract highly accurate natural frequencies of concave plates with arbitrary shape. Originally, the MNDIF method cannot yield accurate natural frequencies for concave plates. It can be applicable to only convex plates. To overcome this weak point, a new approach of dividing a concave plate into two convex domains and applying the MNDIF method to each domain is proposed and the validity and accuracy are shown in verification examples.