• 제목/요약/키워드: New drug development

검색결과 676건 처리시간 0.032초

하어혈탕(下瘀血湯)이 1차배양된 인체자궁근종세포(人體子宮筋腫細胞)에 미치는 영향 (Growth Inhibition of Human Uterine Leiomyoma Cells Using Haeohyul-tang)

  • 김한균;조용걸;조미정;최선미;박숙자;김미려;권영규;김상찬
    • 동의생리병리학회지
    • /
    • 제21권1호
    • /
    • pp.158-164
    • /
    • 2007
  • Uterine leiomyoma is the most common tumor in the female genital tract. Although the tumor is benign, it is a matter of paramount importance since it often causes profuse menstrual bleeding, pressure symptoms and infertility. Nevertheless, the etiology and pathophysiology of this abnormality remain poorly understood. The traditional definitive treatment for uterine leiomyomas is hysterectomy and, even today, symptomatic leiomyomas are the leading cause of hysterectomy in Korea. Clearly, the development of a safe, effective, and nonsurgical method of treatment for leiomyoma would be of great benefit to many women. This study demonstrated growth inhibition of uterine leiomyoma cells using Haeohyultang (HT). When human leiomyoma cells were treated with Haeohyultang, cells showed dose-dependent growth inhibitory effect. Cell growth was inhibited by over 40% as determined by both cell counts and MTS assay. Reduction of cellular viability as a consequence of exposure to Haeohyultang resulted from induction of apoptosis, as assessed by DNA fragmentation, PARP cleavage, caspase 9 and caspase 3 assay. Flow cytometry analysis with uterine leiomyoma cells demonstrated sub G1 cell cycle arrest after treatment with drug Haeohyultang. But, the expression levels of p27 and p21 were not changed in Haeohyultang treated cells compared with control. However, the expression levels of clAP1 were reduced by Haeohyultang compared with control. This reduction of clAP1 data means activation of the caspase family, and then induction of PARP cleavage and apoptosis. These results suggest that Haeohyultang may be potential therapeutic approach in the clinical management of uterine leiomyoma.

Investigation of the Binding Site of CCR2 using 4-Azetidinyl-1-aryl-cyclohexane Derivatives: A Membrane Modeling and Molecular Dynamics Study

  • Kothandan, Gugan;Gadhe, Changdev G.;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3429-3443
    • /
    • 2013
  • Chemokine receptor (CCR2) is a G protein-coupled receptor that contains seven transmembrane helices. Recent pharmaceutical research has focused on the antagonism of CCR2 and candidate drugs are currently undergoing clinical studies for the treatment of diseases like arthritis, multiple sclerosis, and type 2 diabetes. In this study, we analyzed the time dependent behavior of CCR2 docked with a potent 4-azetidinyl-1-aryl-cyclohexane (4AAC) derivative using molecular dynamics simulations (MDS) for 20 nanoseconds (ns). Homology modeling of CCR2 was performed and the 4AAC derivative was docked into this binding site. The docked model of selected conformations was then utilized to study the dynamic behavior of the 4AAC enzyme complexes inside lipid membrane. MDS of CCR2-16b of 4AAC complexes allowed us to refine the system since binding of an inhibitor to a receptor is a dynamic process and identify stable structures and better binding modes. Structure activity relationships (SAR) for 4AAC derivatives were investigated and reasons for the activities were determined. Probable binding pose for some CCR2 antagonists were determined from the perspectives of binding site. Initial modeling showed that Tyr49, Trp98, Ser101, Glu291, and additional residues are crucial for 4AAC binding, but MDS analysis showed that Ser101 may not be vital. 4AAC moved away from Ser101 and the hydrogen bonding between 4AAC and Ser101 vanished. The results of this study provide useful information regarding the structure-based drug design of CCR2 antagonists and additionally suggest key residues for further study by mutagenesis.

P-Glycoprotein-Based Drug-Drug Interactions: Preclinical Methods and Relevance to Clinical Observations

  • Aszalos, Adorjan
    • Archives of Pharmacal Research
    • /
    • 제27권2호
    • /
    • pp.127-135
    • /
    • 2004
  • Multiple drug administration is common in elderly, HIV, and cancer patients. Such treatments may result in drug-drug interactions due to interference at the metabolic enzyme level, and due to modulation of transporter protein functions. Both kinds of interference may result in altered drug distribution and toxicity in the human body. In this review, we have dealt with drug-drug interactions related to the most studied human transporter, P-glycoprotein. This transporter is constitutively expressed in several sites in the human body. Its function can be studied in vitro with different cell lines expressing P-glycoprotein in experiments using methods and equipment such as flow cytometry, cell proliferation, cell-free ATP as activity determination and Transwell culture equipment. In vivo experiments can be carried out by mdr1a(-/-) animals and by noninvasive methods such as NMR spectrometry. Some examples are also given for determination of possible drug-drug interactions using the above-mentioned cell lines and methods. Such preclinical studies may influence decisions concerning the fate of new drug candidates and their possible dosages. Some examples of toxicities obtained in clinics and summarized in this review indicate careful consideration in cases of polypharmacy and the requirement of preclinical studies in drug development activities.

종 특이 프라이머를 이용한 동물성 식품원료의 진위 판별법 개발 (Development of Species-Specific PCR to Determine the Animal Raw Material)

  • 김규헌;이호연;김용상;김미라;정유경;이재황;장혜숙;박용춘;김상엽;최장덕;장영미
    • 한국식품위생안전성학회지
    • /
    • 제29권4호
    • /
    • pp.347-355
    • /
    • 2014
  • 본 연구에서는 식품 중 동물성 사용원료의 진위 판별을 위하여 분자생물학적 기법을 이용한 시험법을 개발하였다. 동물성 식품원료의 종 판별을 위한 유전자로는 미토콘드리아 DNA에 존재하는 COI, Cytb, 및 16S rRNA 유전자를 대상으로 하였으며, 가공식품에 적용하기 위하여 PCR 산물의 크기는 200 bp 내외가 되도록 종 특이 프라이머를 설계하였다. 대상종으로는 가축류 2종, 가금류 6종, 민물어류 2종, 해양어류 13종 및 갑각류 1종, 총 24종을 선정하였으며 종 특이 프라이머를 이용하여 예상되는 PCR 산물의 생성 유무를 확인하였다. PCR을 수행한 결과 토끼, 여우, 꿩, 집비둘기, 멧비둘기, 메추리, 참새, 제비, 메기, 쏘가리, 날치, 열빙어, 청어, 까나리, 멸치, 참조기, 넙치, 조피볼락, 홍어, 가오리, 말쥐치, 농어, 성게 및 바닷가재에 대하여 각각 156, 204, 152, 160, 113, 163, 167, 152, 165, 121, 136, 151, 178, 178, 146, 188, 177, 166, 179, 218, 188, 185, 127 및 172 bp에서 PCR 증폭 산물을 확인하였다. 그리고 프라이머 별로 비교종에서는 비특이적 PCR 산물(non-specific PCR product)은 생성되지 않았다. 본 연구에서 개발된 유전자 분석법을 이용하여 동물성 식품원료가 사용된 식품 원료 및 가공식품의 진위 판별에 활용이 가능할 것이며, 불량식품 근절에 크게 기여할 것으로 기대된다.

Searching for blue ocean of Alzheimer's disease drug discovery

  • 묵인희
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2006년도 Spring Conference
    • /
    • pp.109-120
    • /
    • 2006
  • Alzheimer's disease (AD) is an age-related neurodegenerative disorder. The pathological hallmarks of AD are senile plaques and neurofibrillary tangles in the brain. Major component of senile plaques is amyloid beta peptide(A$\beta$) which is derived from amyloid precursor protein (APP). A$\beta$ is generated through the sequential cleavage of App by $\beta$ - and $\gamma$-secretases. $\beta$-secretase excises the ectodomain of APP ($\beta$-APPs) to leave a 99-amino acid long C-terminal fragment (APP-C99-CTF) in the membrane. $\gamma$-secretase then cleaves this membrane-tethered APP-CTF within the transmembrane domain, so releasing A$\beta$ peptides and APP-intracellular domain (AICD). Thus, $\beta$- and $\gamma$-secretase are regarded to perform the key steps in the pathogenesis of AD and have become important therapeutic targets in the prevention and treatment of AD. Enormous efforts have been focused to develop the amyloid beta related drug for cure of AD becuase A$\beta$ is believed to be one of the major causes of AD. since major pharmaceutical companies in world wide base compete to develop new drug for AD, we have to be careful to choose the drug target to success the tough race. In the present talk, possible drug targets based on basic research results will be discussed. These molecules should be a good target for development of new drug for AD and be less competitive to have a good shape for world wide competition.

  • PDF