• Title/Summary/Keyword: New and renewable energy system

Search Result 1,376, Processing Time 0.032 seconds

Small Wind Turbine Installed at the University Building Rooftop for Green Energy Utillization (그린에너지 활용을 위한 대학건물 옥상설치형 소형풍력발전)

  • Lee, You Suck;Kim, Jae Yong
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.14-21
    • /
    • 2014
  • As the world supply of fossil fuel sources decreases, the need for efficient energy consevation and develping green energy technologies becomes critical. Because of the high cost of the foundation for large turbines and optional high wind speed (over 12 m/s), it is very difficult to be located at inland city. For the solution above mentioned problem, we have been experimented about that not only using the adaption of wind power system on buildings for improving turbine efficiency, but also applying a wound rotor type induction generator for a small wind turbine.In this research, we try to find out the wind direction and wind speed those were measured every 1 min., during operation period, using the anemometers which consist of horizontally spinning cups on a vertical post. Performance testing for small wind turbine generating system was carried out by using the induction motor and invertor. Finally, we measured the power of 1 kW wind turbine system with the clamp meter and a voltmeter.

Internal Flow Analysis of a Fuel Pressurized Blower for Fuel Cell System (연료전지용 연료승압 블로어 내부유동장 평가)

  • Choi, Ka-Ram;Jang, Choon-Man
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.29-35
    • /
    • 2011
  • This paper describes an internal flow characteristics of a fuel pressurized blower, used for 1kW domestic fuel cell system. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is introduced. SST model with scalable wall function is employed to estimate the eddy viscosity. Moving mesh system is applied to the numerical analysis for describing the volume change of a diaphragm cavity in time. Throughout numerical simulation with the modeling of the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Force variations on the lower plate of a diaphragm cavity are evaluated in time. It is found that the driving force at the suction stage of a diaphragm cavity is more necessary than that at the discharging stage.

Web based control modules Using LonWorks/Ethernet Server for Control a large Scale Renewable Energy System in Building (빌딩용 신.재생에너지시스템 제어를 위한 LonWorks기반 원격 제어모듈 개발)

  • Hong, Wonl-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1706-1711
    • /
    • 2008
  • This paper proposes a new Web based-control concept & design method and implementation of LonWorks network system for a large scale renewable energy energy control and monitoring system in building. The Experimental LonWorks network system using LonWorks/Ethernet(Web) server is designed and fabricated. This article addresses issues in architecture of LonWorks/Ethernet sever, embedded processors architecture for converting LonTalks protocol to Modbus protocol and software, and Internet technologies. It is also verified that the multi-induction motor control and monitoring system using LonWorks/Ethernet server have available, interoperable, reliable performance characteristics from the experimental results, Especially, The seamless integration of TCP/IP networks with control networks allows access to any control point from anywhere. Thus, the results provide a available technical data for remote distributed control system of industrial and buildings field.

  • PDF

Review and Suggestion of Korean RPS Scheme (한국의 RPS제도 이행 점검과 개선 방향)

  • Lee, Seongho
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.182-188
    • /
    • 2014
  • For the dissemination of new and renewable energy, Korean government introduced a renewable portfolio standard (RPS) scheme in 2012 after terminating feed-in tariff (FIT) scheme that was introduced in 2004. With the RPS scheme, 64.7% of its own goal (95.7% in PV and 63.3% in non-PV) was achieved in 2012 and 67.2% of that (94.9% in PV, 65% in non-PV) was achieved in 2013. The deployment of PV systems met the goal very well and that of non-PV did not. Recently, Korean government revised the target year of supplying 10% electricity from new and renewable energy from 2022 to 2024 and released a couple of measures on PV area. Recent studies showed that the bankability of a project plays a key role for PV dissemination. Therefore, the dissemination should be assessed from the point of bankability under the RPS scheme and a little adjustment is necessary to achieve the goal. Especially, installing a small size PV (<100 kwp) system needs a minimum REC price or a FIT scheme. In non-PV area, permission process is a common bottleneck and the related regulation should be eased. In addition, to achieve the long term goal, an implementing scenario has to be prepared. Currently, the portion of the waste-gas energy originated from fossil fuel is too large among the new and renewable energy sources and the portion should be lowered or eliminated in the 10% of electricity supply goal. Seoul Metropolitan Government (SMG) has its own FIT scheme for PV dissemination from 2014 SMG and revised the PV tariff from 50 to 100 won/kwh in effective of 2015. It is worth to spread the other provinces.

Cooling Performance of Ground source Heat Pump using Effluent Ground Water (유출지하수 열원 지열히트펌프시스템의 냉방성능)

  • Park, Geun-Woo;Nam, Hyun-Ku;Kang, Byung-Chan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.47-53
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effluent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000ton/day$. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

Heating Performance of Ground source Heat Pump using Effluent Ground Water (유출지하수 열원 지열히트펌프시스템의 난방성능)

  • Park, Geun-Woo;Lee, Eung-Youl
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.40-46
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}...$ annually and the quality of that water is as good as well water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000\;ton/day$. The heat pump capacity is 5RT. The heat pump heating COP was $3.85{\sim}4.68$ for the open type and $3.82{\sim}4.69$ for the close type system. The system heating COP including pump power is $3.0{\sim}3.32$ for the open type and $3.32{\sim}3.84$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

Application of the Geothermal Hybrid System for Huge Size Common Structures with Heating & Cooling System (지열 Hybrid System 개발을 통한 대형 공동구조물 지열에너지 적용성 평가)

  • Park, Si-Sam;Na, Sang-Min;Park, Jong-Hun;Rhee, Keon-Joong;Kim, Tae-Won;Kim, Sung-Yub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.588-591
    • /
    • 2009
  • Ground source heat pump system; GSHPs is close to most practical use for early stage investment cost and energy efficiency in new renewable energies, and currently considered utilizing to the heat and cooling system of a building. Particularly, the case to utilize 'Standing Column well heat source gathering method' in the open standards process to have the excellent capability of gathering geothermal source is increased. But the research for the optimal design technology and the assessment of a pollution level of the ground to utilize a single well for gathering geothermal is insignificant and the design is insufficient. The heating and cooling system and the equipment to utilize a large size residential development to have over 1000 households have not developed yet. Therefore, our company developed 'geothermal hybrid system' which can construct the heat and cooling system using geothermal energy for a large size residential development of over 1000 households and conducted the evaluation of economic feasibility. Moreover we developed automatic equipment for gathering geothermal source and PLC (Programmable logic controller) to have optimal efficiency and FCU (fan coil unit) considering the floors of large size apartments.

  • PDF

A Parasol-type Grid-connected Solar Power Generation System for Utilization of New and Renewable Energy (신.재생에너지 활용을 위한 연계 계통형 그늘막 태양광 발전 시스템)

  • Lee, Jae-Min;Lee, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.230-236
    • /
    • 2009
  • In this paper, in order to utilize new and renewable energy a grid-connected parasol-type solar power generation system is presented. The proposed power system combining with commercial electric power system is designed to meet the need fur maximum power consumption and parasols for the people staying at beach during hot summer. Solar electric power can be charged in rechargeable batteries during day time and used to provide charged electric power to loads like lamps and fans during night time, A battery charge-discharge controller is required for the good performance of batteries to be charged. The presented battery controller is designed based on high performance microprocessor for precise charge-discharge operations. An alarm circuit to give notice of battery exchange time and other convenient functions are installed in the system. We implemented the proposed solar power generation system at East Sea beach during peak summer season to verify its productivity and performance by experiments.