• Title/Summary/Keyword: New and renewable energy

Search Result 4,011, Processing Time 0.043 seconds

Generation of Charged Clusters and their Deposition in Polycrystalline Silicon Hot-Wire Chemical Vapor Deposition (열선 CVD 증착 다결정 실리콘에서 전하를 띈 클러스터의 생성 및 증착)

  • Lee, Jae-Ik;Kim, Jin-Yong;Kim, Do-Hyeon;Hwang, Nong-Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.561-566
    • /
    • 2005
  • Polycrystalline silicon films were deposited using hot wire CVD (HWCVD). The deposition of silicon thin films was approached by the theory of charged clusters (TCC). The TCC states that thin films grow by self-assembly of charged clusters or nanoparticles that have nucleated in the gas phase during the normal thin film process. Negatively charged clusters of a few nanometer in size were captured on a transmission electron microscopy (TEM) grid and observed by TEM. The negatively charged clusters are believed to have been generated by ion-induced nucleation on negative ions, which are produced by negative surface ionization on a tungsten hot wire. The electric current on the substrate carried by the negatively charged clusters during deposition was measured to be approximately $-2{\mu}A/cm^2$. Silicon thin films were deposited at different $SiH_4$ and $H_2$ gas mixtures and filament temperatures. The crystalline volume fraction, grain size and the growth rate of the films were measured by Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The deposit ion behavior of the si1icon thin films was related to properties of the charged clusters, which were in turn controlled by the process conditions. In order to verify the effect of the charged clusters on the growth behavior, three different electric biases of -200 V, 0 V and +25 V were applied to the substrate during the process, The deposition rate at an applied bias of +25 V was greater than that at 0 V and -200 V, which means that the si1icon film deposition was the result of the deposit ion of charged clusters generated in the gas phase. The working pressures had a large effect on the growth rate dependency on the bias appled to the substrate, which indicates that pressure affects the charging ratio of neutral to negatively charged clusters. These results suggest that polycrystalline silicon thin films with high crystalline volume fraction and large grain size can be produced by control1ing the behavior of the charged clusters generated in the gas phase of a normal HWCVD reactor.

  • PDF

A Study on Properites of PV Solar cell AZO thin films post-annealing by RTP technique (RTP 공정을 통한 태양전지용 AZO 박막의 후열처리 특성연구)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Han, Chang-Jun;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hea-Deok;Lee, Suk-Ho;Back, Su-Ung;Na, Kil-Ju;Jeong, Woon-Jo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.127.1-127.1
    • /
    • 2011
  • In this paper, ZnO:Al thin films with c-axis preferred orientation were prepared on Soda lime glass substrates by RF magnetron sputtering technique. AZO thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and substrate temperature conditions variously, structural and electrical characteristics were measured. For the manufacture of the AZO were vapor-deposited in the named order. It is well-known that post-annealing is an important method to improve crystal quality. For the annealing process, the dislocation nd other defects arise in the material and adsorption/decomposition occurs. The XRD patterns of the AZO films deposited with grey theory prediction design, annealed in a vacuum ambient($2.0{\times}10-3$Torr)at temperatures of 200, 300, 400 and $500^{\circ}C$ for a period of 30min. The diffraction patterns of all the films show the AZO films had a hexagonal wurtzite structure with a preferential orientation along the c-axis perpendicular to the substrate surface. As can be seen, the (002)peak intensities of the AZO films became more intense and sharper when the annealing temperature increased. On the other hand, When the annealing temperature was $500^{\circ}C$ the peak intensity decreased. The surface morphologies and surface toughness of films were examined by atomic force microscopy(AFM, XE-100, PSIA). Electrical resistivity, Gall mobility and carrier concentration were measured by Hall effect measuring system (HL5500PC, Accent optical Technology, USA). The optical absorption spectra of films in the ultraviolet-visibleinfrared( UV-Vis-IR) region were recorder by the UV spectrophotometer(U-3501, Hitachi, Japan). The resistivity, carrier concentration, and Hall mobility of ZnS deposited on glass substrate as a function of post-annealing.

  • PDF

Characterization of Ni-YSZ cermet anode for SOFC prepared by glycine nitrate process (Glycine nitrate process에 의한 제조된 SOFC anode용 Ni-YSZ cermet의 물성)

  • Lee, Tae-Suk;Ko, Jung-Hoon;Lee, Kang-Sik;Kim, Bok-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • Ni-YSZ (Yttria Stabilized Zirconia) composite powders were fabricated by glycine nitrate process. The prepared powders were sintered at $1300{\sim}1400^{\circ}C$ for 4 h in air and reduced at $1000^{\circ}C$ for 2 h in a nitrogen and hydrogen atmosphere. The microstructure, electrical conductivity, thermal expansion and mechanical properties of the Ni-YSZ cermets have been investigated with respect to the volume contents of Ni. A porous microstructure consisting of homogeneously distributed Ni and YSZ phases together with well-connected grains was observed. It was found that the open porosity, electrical conductivity, thermal expansion and bending strength of the cermets are sensitive to the volume content of Ni. The Ni-YSZ cermet containing 40 vol% Ni was ascertained to be the optimum composition. This composition offers sufficient open porosity of more than 30 %, superior electrical conductivities of 917.4 S/cm at $1000^{\circ}C$ and a moderate average thermal expansion coefficient of $12.6{\times}10^{-6}^{\circ}C^{-1}$ between room temperature and $1000^{\circ}C$.

Semantic Segmentation for Roof Extraction using Official Buildings Information (건물 통합 정보를 이용한 지붕 추출 의미론적 분류)

  • Youm, Sungkwan;Lee, Heekwon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.582-583
    • /
    • 2021
  • As the production of new and renewable energy such as solar and wind power has diversified, microgrid systems that can simultaneously produce and consume have been introduced. . In general, a decrease in electricity prices through solar power is expected in summer, so producer protection is required. In this paper, we propose a transparent and safe gift power transaction system between users using blockchain in a microgrid environment. A futures is simply a contract in which the buyer is obligated to buy electricity or the seller is obliged to sell electricity at a fixed price and a predetermined futures price. This system proposes a futures trading algorithm that searches for futures prices and concludes power transactions with automated operations without user intervention by using a smart contract, a reliable executable code within the blockchain network. If a power producer thinks that the price during the peak production period (Hajj) is likely to decrease during production planning, it sells futures first in the futures market and buys back futures during the peak production period (Haj) to make a profit in the spot market. losses can be compensated. In addition, if there is a risk that the price of electricity will rise when a sales contract is concluded, a broker can compensate for a loss in the spot market by first buying futures in the futures market and liquidating futures when the sales contract is fulfilled.

  • PDF

Design and fundamental test on the cargo pump sump scaled model of tankers (탱크선 카고 펌프장 축소모델 설계 및 기초 실험)

  • Lee, Jo-Yeon;Kim, Seung-Jun;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • The internal flow of a pump system that is installed in the interior of large vessels such as tankers is largely affected by the water level and flow conditions of the pump sump. However, the performance of the pump is generally evaluated with the consideration of only the performance of the pump itself, without considering the pumping station operating environment. Therefore, if the pump is affected by the incoming flow that exhibits vortex and swirl, the occurrence of vortex and swirl accompanied with air may cause problems with the pump sump. This effect of flow condition can lead to a decrease in efficiency, increase in vibration, and noise generation in the pump. In this study, to investigate the internal flow of the pump sump according to several water levels, a pump sump scale-model was designed and constructed. The frequency of vortex occurrence and the shape of the vortex were investigated according to the different water levels of a fundamental test. The Class C vortex type, which has a larger volume of air intake to the pump, was confirmed by the higher occurrence frequency at a relatively lower water level.

A Study on the Planning Technique of High-rised Housing Estates Applying Smart Green City Concept : Focus on Multi-functional Administrative City 2-1 Neighborhood (스마트 그린시티 개념을 적용한 고층주거단지 계획기법에 관한 연구 : 행정중심복합도시 2-1생활권을 중심으로)

  • Lee, Seo-Jeong;Lee, Eung-Hyun;Oh, Deog-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.379-387
    • /
    • 2016
  • The goal of this research is to identify the planning techniques of high-rise housing estates applying a smart green city concept in order to understand the necessity of integrating 'planning & building' planning techniques and 'smart system' planning techniques and to analyze the current status of application. For the research, firstl, the definition of smart green city was established and high-rise housing estates planning was categorized according to a three space hierarchy, seven planning directions and 17 major features through literature review. Second, 28 'planning & building' planning techniques and 'smart system' planning techniques were derived through literature review and FGI analysis. Last, four cases in Multi-functional Administrative City were analyzed for the current status of application of planning techniques. In conclusion, planning techniques in 'Transportation Network', 'Environment-friendly layout planning of housing', 'Revitalization of green transportation', 'Utilization of new & renewable energy', 'Crime prevention and accident reduction', 'Use of high performance, and efficiency facility' main feature were identified as important planning techniques for Smart Green City and its implications were estimated.

Flow Characteristics and Wind Loads on the Solar Panel and Floating System of Floating Solar Generato (부유식 태양광 발전기의 패널과 부유체에 작용하는 풍하중과 유동특성)

  • Ryu, Dae-Gyeom;Lee, Kye-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.229-235
    • /
    • 2019
  • A floating photovoltaic generation system is a new concept that combines existing photovoltaic generation technology with floating technology. This is installed in the water not on conventional land and a building. The system is designed as a unit module type that can be connected to other modules according to the power generation capacity, thereby forming a large-scale power generation facility. As a renewable energy source, it is composed of a floating structure, mooring device, photovoltaic power generation facility, and underwater cable. Because this system is installed outdoors, the effect of the wind load on the structure is very large. In this study, the wind loads most affected on the floating photovoltaic generation structure were obtained by computational fluid dynamic analysis. The flow characteristics and wind loads were analyzed for a range of wind orientations and angles of inclination. The analysis showed the position and magnitude of the maximum wind load to the wind direction and the flow characteristics around the solar panel and floating system. The wind load increased with increasing angle of inclination of the panel to the ground.

Using the Binomial Option Pricing Model for Strategic Sales of CER's to Improve the Economic Feasibility of CDM projects (이항옵션가격 모형을 활용한 CER 판매전략 구축과 이를 통한 CDM 사업 수익성 향상 방안에 관한 연구)

  • Koo, Bonsang;Park, Jong-Ho;Kim, Cheong-Woon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.1
    • /
    • pp.111-121
    • /
    • 2014
  • The Clean Development Mechanism (CDM) allows New & Renewable Energy projects to make additional income by selling CER's, which represent the amount of Green House Gases(GHG) that is reduced in the project. However, forward contracts used to hedge fluctuating market prices does not allow projects to sell CER's at a premium. As an alternate approach to maximize CER revenue, CER's are modeled as a 'real option', in which CER's are sold only above the desired sales price. Using the Binomial Option Pricing model, the resultant lattices are used to determine whether to sell, defer or abandon the option at individual nodes. Overlaying Pascal's Triangle on the lattices also enabled the calculation of the annual probabilities for deferring CER sales without incurring downside losses. Application to an actual Landfill Gas project showed increased overall NPV, and that CER sales could be deferred at a maximum of 2 years. The proposed framework allows transparency in the analysis and provides valuable and strategical information when making investment decisions related to CER sales of CDM projects.

Study on the fabrication of a polycrystalline silicon (pc-Si) seed layer for the pc-Si lamelliform solar cell (다결정 실리콘 박형 태양전지를 위한 다결정 실리콘 씨앗층 제조 연구)

  • Jeong, Hyejeong;Oh, Kwang H.;Lee, Jong Ho;Boo, Seongjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • We studied the fabrication of polycrystalline silicon (pc-Si) films as seed layers for application of pc-Si thin film solar cells, in which amorphous silicon (a-Si) films in a structure of glass/Al/$Al_2O_3$/a-Si are crystallized by the aluminum-induced layer exchange (ALILE) process. The properties of pc-Si films formed by the ALILE process are strongly determined by the oxide layer as well as the various process parameters like annealing temperature, time, etc. In this study, the effects of the oxide film thickness on the crystallization of a-Si in the ALILE process, where the thickness of $Al_2O_3$ layer was varied from 4 to 50 nm. For preparation of the experimental film structure, aluminum (~300 nm thickness) and a-Si (~300 nm thickness) layers were deposited using DC sputtering and PECVD method, respectively, and $Al_2O_3$ layer with the various thicknesses by RF sputtering. The crystallization of a-Si was then carried out by the thermal annealing process using a furnace with the in-situ microscope. The characteristics of the produced pc-Si films were analyzed by optical microscope (OM), scanning electron microscope (SEM), Raman spectrometer, and X-ray diffractometer (XRD). As results, the crystallinity was exponentially decayed with the increase of $Al_2O_3$ thickness and the grain size showed the similar tendency. The maximum pc-Si grain size fabricated by ALILE process was about $45{\mu}m$ at the $Al_2O_3$ layer thickness of 4 nm. The preferential crystal orientation was <111> and more dominant with the thinner $Al_2O_3$ layer. In summary, we obtained a pc-Si film not only with ${\sim}45{\mu}m$ grain size but also with the crystallinity of about 75% at 4 nm $Al_2O_3$ layer thickness by ALILE process with the structure of a glass/Al/$Al_2O_3$/a-Si.

  • PDF

A Study on the Development Strategy of Offshore Oil Resource in China (중국의 해외 석유자원 개발 전략에 관한 연구)

  • Lee, Choong-Bae;Noh, Jin-Ho
    • International Commerce and Information Review
    • /
    • v.13 no.3
    • /
    • pp.119-142
    • /
    • 2011
  • Competitions for secure oil are intense around the world due to the limited oil reserves. The situations are becoming more serious as China has participated in the competition. This paper aims to investigate China's offshore oil development strategies to balance the supply and demand of oil and then suggest its policy implications. A surging increase of oil demand due to the rapid economic growth as well as the stagnation in domestic oil output has turned China into a net oil importer since 1993. Therefore, China has placed a significant priority on securing long-term stability of its offshore oil to cope with the rapid growing demand. It has taken a variety of strategies to secure stable oil resource such as development of offshore oil resource, increasing the number of oil importing countries. China with the highest foreign exchange reserve of approximately $3 trillion as of 2010, has considered to employ foreign exchange reserves while making a huge amount of investment to secure oil resource. China has pursued several policies such as loan to oil production country for securing oil, foreign direct investment on offshore oil development, M&A of oil exploration and production companies and geographical diversification of oil importing countries. China has promoted offensive strategies for securing oil resource rather than cooperation with other countries. Thus, China should find a trade-off point for recovering relationship with international society while developing and investing renewable energy for long-term future. It will also address some implications for Korea, which has to prepare new strategies of overseas oil development.

  • PDF