• Title/Summary/Keyword: New Weapon System

Search Result 136, Processing Time 0.026 seconds

Conceptual Study of the Future Holonic Weapon System (미래전장 홀로닉 무기체계 개념)

  • 최진희;유삼현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.183-190
    • /
    • 2000
  • The concept of Holon was suggested by A. Koestler in his paper(1967) "The Ghost in the Machine." It became one of the central concept of the Intelligent Manufacturing System. In this paper, a new system concept: Holonic Weapon System was introduced. HWS has the advantages of the holonic system and the system integration technique so that the future unmanned combat system should consider this concept.

  • PDF

A Method for build an Ontology-based Component Semantic Search System for Reconfiguration of Weapon System (무기체계 재구성을 위한 온톨로지 기반 컴포넌트 시맨틱 검색 시스템 구축 방법)

  • Seo, Dong Jin;Seo, Yoonho
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • Recently in the field of defense Modeling and Simulation (M&S), Component-Based Development technology is widely applying to save the cost and increase the reusability of weapon system development. Related with this, researches for rapid reconfiguration and simulation of the component-standardized weapon system is actively carrying out. To rapidly reconfigure the new weapon system, complex and various functions of component information has to be effectively searched. So, it requires differentiated search technique unlike existing Keyword-based Search method. Semantic Search System provides semantically related information among the extensive information. In this research, metadata of weapon system components and their representative functional words are built as an ontology. And it provides an ontology-based semantic search system.

Economical & Technological Ripple Effects in Acquiring New Weapon System : Focused on Ground·Sea·Air Weapon System (국방무기체계 연구개발 기반 경제적·기술적 파급효과 : 지상·해상·공중 무기체계를 중심으로)

  • Shin, Sang-Wook;Oh, Cheon-Kyun;Yim, Dong-Soon;Choi, Bong-Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.111-122
    • /
    • 2018
  • The private sector is currently reviewing the feasibility of the project or deciding economic policies by analyzing the economic ripple effects. However, the arms acquisition project focuses on the need for the national defense weapons system by analyzing the costs and the effectiveness of the analysis and reviewing the necessity and feasibility of the project. In order to analyze the economic ripple effects, KB (the Bank of Korea) prepares and publishes an analysis table of industrial associations in a given unit. IAAR (the industrial association analysis report) is difficult to apply directly to the defense weapons system. Therefore, research on the economic ripple effects applicable to the defense arms procurement project was needed. In this study, we propose the generic methodology for estimating economical and technical ripple effects resulted in acquiring new weapon systems. Based on the analysis of inter-industrial relations, economical ripple effects are estimated with production inducing effects, value-induced effects, employment-induced effects and export-induced effects. Also, the technological ripple effects are estimated with technological intensity represented by investment cost in research and development. To show the validity of proposed methodology, a case study of acquiring new weapon systems such as GR (guided rocket), destroyer, and helicopter is accomplished. From the case study, it is concluded that these economical & technological ripple effects can be used as a reference to decision making in the course of acquiring major future defense weapons systems.

Firing Data Calculation Algorithm for Smart Weapon System Under Non-standard Conditions (스마트무장 비 표준조건 사격제원 산출 알고리즘)

  • Moon, Kyujin;Jeong, Ui-Taek;Lee, Yongseon;Choi, Sungho;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.233-240
    • /
    • 2022
  • The smart weapon system is a new weapon system of the future battlefield environment as a miniature guided weapon that performs precision strike missions through terminal phase guidance. However, it has small coverage to guide due to its low maneuverability because the smart weapon is controlled by using actuator of piezoelectric drive type due to the structural limitations. In this paper, we propose a firing data calculation algorithm under non-standard conditions to increase the effectiveness of the smart weapon. The proposed algorithm calculates firing data under non-standard conditions by calibrating firing data under standard conditions using information acquired in battlefield environments. The performance of the proposed algorithm is verified by numerical simulations under various conditions.

A Study on the Design of KVMF 2.0 Protocol for Ensuring Backward/Forward Compatibility between Different KVMF Message Standard Versions

  • Jeong-Min, Lee;Won-Gi, Lim;Won-Jun, Cho;Yong-Cheol, Kim;Jeung-Sub, Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.45-58
    • /
    • 2023
  • KVMF(Korean Variable Message Format) 1.0 protocol is the Army's standard tactical datalink protocol that defines standard messages and communication methods to enable data communication between various weapon systems through bitwise variable message processing. The protocol has been applied to a variety of Army weapon systems over the past decade and has contributed to upgrade the Army's operational capabilities by enabling the implementation of Network Centric Warfare (NCW), the core of modern warfare. Since the KVMF 1.0 protocol was applied, new weapon systems with new technologies have been introduced over time, and new weapon systems have new messages based on the characteristics of the weapon system. As a result, compatibility problems arose due to different message versions with existing weapon systems, and it was expected that these problems would continue to emerge in the future, considering the need for continuous message revisions. Therefore, it became necessary to solve this problem, so this paper proposed a KVMF 2.0 protocol design that guarantees compatibility between forward and backward versions. In this paper, we implemented the design as SW, and confirmed that the design worked successfully by test between forward and backward versions on test environment. Therefore, when the KVMF 2.0 protocol design is applied to a weapon system, we can expect that the weapon system can be compatible with the forward and backward versions working with the existing weapon systems as well as with the future weapon systems.

A Study on the process modeling for weapon system R&D CALS system (무기체계 연구개발 CALS체계 구현 프로세스 모델링 연구)

  • 김철환;김동순;정진원
    • The Journal of Society for e-Business Studies
    • /
    • v.4 no.2
    • /
    • pp.177-196
    • /
    • 1999
  • The current process of weapon system R&D has lots of problems that the phase is complex, the concept of integration and/or connection of related data is laked and don't be digitalized. To solve these problems we should establish the R&D CALS system and to do this, analysis the R&D process is necessary. In this paper, We suggested weapon system R&D CALS concept and model, and analysed R&D process with ARIS Toolset and proposed the new R&D process and operation scenarios with CALS concept.

  • PDF

A Study on the Multi-Criteria Decision Making for Effect Analysis and Decision Making of Weapon System (무기체계의 효과분석과 의사결정을 위한 다기준분석 방법론의 연구)

  • Lim, Sung-Hoon;Cho, Ki-Hong;Park, Seung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.557-562
    • /
    • 2009
  • Weapon system currently considers the research about effect analysis including cost effectiveness methodology for a budget management and an achievement of the military strategy goal. So that, this study considers the theoretical background, strength and weakness of several Multi-Criteria Decision Making, and an effect analysis of weapon system. And AHP(Analytic Hierarchy Process) is selected for the best effect analysis methodology of weapon system. Therefore, we applied AHP to the case study of the new generation Multiple Launcher Rocket System, performing the analysis of cost effectiveness methodology. Using AHP and cost effectiveness methodology, we propose the actual and proper decision making result.

A Study on the Standard Architecture of Weapon Control Software on Naval Combat System

  • Lee, Jae-Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.101-110
    • /
    • 2021
  • The Weapon Control Software performs the function of supporting weapon operation within the Naval Combat System in connection with the Weapon System. As Weapon Control Software depends on an Weapon System, it has the characteristic that software modification is unavoidable with the change in Interface information. Modification of software causes an increase in development costs since it must take verification step such as software reliability test. In this paper, We design the standard architecture of weapon control software to minimize the modification elements of existing weapon control software. For Interface information management, Feature Model were applied to make a division between common factor and variable factor. In addition, Strategy Pattern were applied to improve the software design. Software evaluation test results show that new architecture provides better modifiability and reuse than existing software as well as the cost of development decrease.

Simulation Based Study to Verify the Required Operational Capability of the Para-Observation Munition (관측포탄 작전운용성능 검증을 위한 시뮬레이션 연구)

  • Ha, Set Byul;Kwon, Ojeong;Lee, Youngki;Cho, Namsuk
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.87-101
    • /
    • 2021
  • Required Operational Capability(ROC), which means the performance of a weapon system, is determined when estimating the requirements of a new weapon system. It is very important to define the ROC as it has a decisive influence from acquisition of a weapon system to tactical operation. In this study, we propose a simulation methodology to verify the ROC of the Para-Observation Munition(POM), a newly developed weapon system. To this end, we propose a discrete-event simulation model that takes main performance of the weapon system constituting the ROC and environmental factors that affect performance of the weapon system as input values, and outputs operational effect as a result value. It describes various simulation logic required to implement a simulation model, and explains how to verify ROC using various simulation results such as sensitivity analysis. POM is a weapon system that does not have a similar one and that is difficult to directly utilize the military analysis model. This study can be used as a methodology to analyze the ROC and predict operational effects of weapon systems such as POM.

A study on the development of Logistic Support system (군수 지원시스템 개발 방법에 관한 연구)

  • 신주환;전완수;김형렬
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.166-172
    • /
    • 1999
  • Weapon system is defined as a combination of primary system and logistics support system which are evaluated by capability and operational availability respectively. Weapon system developer thought that primary system was weapon system and also only primary system was important. Recent comparison of total life cycle cost showed that logistics support system was proved to be more important than primary system. However, until now no systematic approach to logistics support system development have applied in the area of developing support system and much money was exhausted by wrong logistics support system. We need to construct a universal metric for effectiveness of logistics support system and to cut out whatever activities or support elements which do not contribute to the metrics. This study describes a new approach under the name function approach to logistics support system development and also classifies five factors of failure frequency, stock out of frequency, administrative delay time, active repair time and logistic delay time that have influence on operational availability of logistics support system.

  • PDF