• Title/Summary/Keyword: New Shape

Search Result 4,049, Processing Time 0.032 seconds

A Study on the Characteristics of 3D Printing Jewelry Design Utilizing with Fractal Geometry (프랙탈 기하학을 적용한 프린팅 주얼리 디자인 3D 특성)

  • Choi, Kyunghee
    • Journal of Fashion Business
    • /
    • v.21 no.5
    • /
    • pp.136-150
    • /
    • 2017
  • 3D printing has grown tremendously as the most noteworthy new technology in the manufacturing industries. In addition, the rapid development of computer science technology with 3D printing has created a new paradigm called Fractal Geometry, or a new form of digital art. This study explores the formative characteristics of 3D printing jewelry based on presentation of fractal geometry by classification of 3D printing jewelry's morphological types that except for producible shape with traditional mold manufacturing methods. The results of the study are as follows. The morphological characteristics of 3D printed jewelry are divided into their constitutive shapes by the repetition of the unit. The organic shape determined by superposition or overlapping, the systematic shape by distortion caused by distortion, and the variation in scaling by scaling. The formative characteristics, which are drawn from a study on the shape expression of 3D printed jewelry design using fractal geometry, consist of continuity, geometrical characteristics, and exaggeration. Continuity creates a new and self-assigned new space through a recursive structure through a cyclic structure that is formed along a single directional basis. The geometry of the geometry forms a three-dimensional and constructive structure comprised of the same size and structure of the same sized unit under the mathematical order of the geometry of Fractal's geometry. Exaggeration demonstrates the informal beauty and the maximization of the shape by expanding the scaling or superposition of a unit, by scaling the scale or he distortion of the units.

A Study on Air-tightness of High Pressure Liquid Hydrogen Pumping System at the Low Temperature (액체수소용 초저온 고압 피스톤 펌프의 기밀성 향상에 관한 기초연구)

  • Lee, Jonggoo;Lee, Jongmin;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.302-310
    • /
    • 2013
  • As an initial step to develop a liquid hydrogen pump of piston type operated under cryogenic and high pressure, leakage and piston head shape for the piston pump were discussed with temperature and pressure. As the results, the leakage depended on correlation among density, viscosity, clearance area by the low temperature. In order to reduce the leakage, it was found that the air-tightness can be improved by minimizing contact surface between piston and cylinder, and also increasing pressure in-cylinder can reduce piston clearance. Among the proposed piston shapes, D type piston shape had the most air-tightness. D type piston had smaller contact surface than other piston shape and easier expansion of cup shape by pressure. The leakage of D type piston shape was found about 7%, compared with A type piston shape. But it was required that analyze about vapor lock by friction and wear resistance.

Morphological Shape Decomposition using Multiscan Mode (다중스캔 모드를 이용한 형태론적인 형상분해)

  • 고덕영;최종호
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • In this study, a shape decomposition method using morphological operations is studied for decomposing the complex shape in 2-D image into its simple primitive elements. The serious drawback of conventional shape representation algorithm is that primitive elements are extracted too much to represent and to describe the shape. To solve these problems, a new shape decomposition algorithm using primitive elements that are similar to the geometrical characteristics of shape and 4 scan modes is proposed in this study. The multiple primitive elements as circle, square, and rhombus are extracted by using multiscan modes in a new algorithm. This algorithm have the characteristics that description error and number of primitive elements is reduced. Then, description efficiency is improved. The procedures is also simple and the processing time is reduced.

  • PDF

Algorithm of Morphological Multimode Binary Shape Decomposition (형태론적 다중모드 2진 형상분해 알고리즘)

  • Choi, Jong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.67-75
    • /
    • 1999
  • In this paper, a shape decomposition method using morphological operations is studied for decomposing the complex shape in 2-D image into its simple primitive elements. The serious drawback of conventional shape representation algorithm is that primitive elements are extracted too much to represent and to describe the shape. To solve these problems, a new shape decomposition algorithm using primitive elements tat are similar to the geometrical characteristics of shape and 4 scan modes is proposed in this study. The multiple primitive elements as circle, square, and rhombus are extracted by using multiscan modes in a new algorithm. This algorithm have chatacteristics that description error and number of primitive elements is reduced. Then, description efficiency is improved. The procedures is also simple and the processing time is reduced.

  • PDF

New Formulation of MNDIF Method for Eigenvalue Analysis of Plates (평판의 고정밀도 고유치 해석을 위한 새로운 MNDIF법 정식 개발)

  • Kang, Sang Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.180-185
    • /
    • 2013
  • A new formulation of the MNDIF method is introduced to extract highly accurate natural frequencies of concave plates with arbitrary shape. Originally, the MNDIF method cannot yield accurate natural frequencies for concave plates. To overcome this weak point, a new approach of dividing a concave plate into two convex domains is proposed and the validity and accuracy is shown in a verification example.

  • PDF

Seven new species of two genera Scalarispongia and Smenospongia (Demospongiae: Dictyoceratida: Thorectidae) from Korea

  • Kim, Young A;Lee, Kyung Jin;Sim, Chung Ja
    • Journal of Species Research
    • /
    • v.9 no.2
    • /
    • pp.147-161
    • /
    • 2020
  • Seven new species of two genera Scalarispongia and Smenospongia (Demospongiae: Dictyoceratida: Thorectidae) are described from Gageo Island and Jeju Island, Korea. Five new species of Scalarispongia are compared to nine reported species of the genus by the skeletal structure. Scalarispongia viridis n. sp. has regular ladder-like skeletal pattern arranged throughout the sponge body and has pseudo-tertiary fibres. Scalarispongia favus n. sp. is characterized by the honeycomb shape of the surface and is similar to Sc. flava in skeletal structure, but differs in sponge shape. Scalarispongia lenis n. sp. is similar to Sc. regularis in skeletal structure but has fibers that are smaller in size. Scalarispongia canus n. sp. has irregular skeletal structure in three dimensions and ladder-like which comes out of the surface and choanosome. Scalarispongia subjiensis n. sp. has pseudo-tertiary fibres and its regular ladder-like skeletal pattern occurs at the choanosome. Two new species of Smenospongia are distinguished from the other 19 reported species of the genus by the skeletal structure. Smenospongia aspera n. sp. is similar to Sm. coreana in sponge shape but new species has rarely secondary web and thin and thick bridged fibres at near surface. Smenospongia mureungensis n. sp. has very simple skeletal structure.

Study on Qiang embroidery patterns creative design based on Shape Grammars

  • Ruiyu Li;Xiajie Zhao
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.51-59
    • /
    • 2024
  • Qiang ethnic group is one of the fifty-six ethnic minorities in China, and Qiang embroidery, as an important achievement of Qiang's intangible cultural heritage, is the precipitation and testimony of the history and culture of the Qiang ethnic group. However, with the development of the times, traditional and ancient Qiang embroidery is facing a dilemma due to the problem of a single form of communication. Therefore, it is necessary to add new communication media for Qiang embroidery to help it spread and develop better. In this paper, we extract the core representative patterns of Qiang embroidery, use the "shape grammars" as the rules of morphological changes, and generate new decorative pattern patterns with the characteristics of Qiang embroidery by adding, deleting, mirroring, rotating, and other relevant rules of changes, and combine the new patterns with the rules of formal beauty to combine the layout, which is then applied in the design of different cultural creations and products. The new patterns are combined with the rules of formal beauty and applied in the design of different cultural and creative products. To provide a quantitative method for the digital protection of Qiang embroidery in the new era of Chinese traditional art, and also provide new ideas for the industrialization application.

A Study on the Learning Shape Knowledge and Design with Inductive Generalization (귀납적 일반화를 이용한 형태지식의 습득과 디자인에 관한 연구)

  • Cha, Myung-Yeol
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.20-29
    • /
    • 2010
  • Art historians and critics have defined the style as common features appeared in a class of objects. Abstract common features from a set of objects have been used as a bench mark for date and location of original works. Commonalities in shapes are identified by relationships as well as physical properties from shape descriptions. This paper will focus on how the computer and human can recognize common shape properties from a class of shape objects to learn design knowledge. Shape representation using schema theory has been explored and possible inductive generalization from shape descriptions has been investigated. Also learned shape knowledge can be used. for new design process as design concept. Several design process such as parametric design, replacement design, analogy design etc. are used for these design processes. Works of Mario Botta and Louis Kahn are analyzed for explicitly clarifying the process from conceptual ideas to final designs. In this paper, theories of computer science, artificial intelligence, cognitive science and linguistics are employed as important bases.

Study on the Design Method for the Train Nose Shape Using the Configuration Function (형상함수를 이용한 열차 전두부 설계기법 연구)

  • Ku, Yo-Cheon;Rho, Joo-Hyun;Yun, Su-Hwan;Kwak, Min-Ho;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2218-2223
    • /
    • 2008
  • A nose shape is strongly related with the aerodynamic performances of train. Therefore shape definition and aerodynamic performance analysis are important for train nose shape design. In this study, a new design method was suggested for train nose shape design by configuration function. To this end, the nose shape was classified by box type and each box shape is defined. After that the 3-D shape of train was defined as several mathematical functions by combination of each box shape. Also it was shown that the wind shield of driver's seat and complex curves of surface can be expressed using superposition of functions. This methodology can be used for grid generation of numerical analysis, and applied to aerodynamic optimization design of nose shape.

  • PDF

MEASURE THEORETICAL APPROACH FOR OPTIMAL SHAPE DESIGN OF A NOZZLE

  • FARAHI M. H.;BORZABADI A. H.;MEHNE H. H.;KAMYAD A. V.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.315-328
    • /
    • 2005
  • In this paper we present a new method for designing a nozzle. In fact the problem is to find the optimal domain for the solution of a linear or nonlinear boundary value PDE, where the boundary condition is defined over an unspecified domain. By an embedding process, the problem is first transformed to a new shape-measure problem, and then this new problem is replaced by another in which we seek to minimize a linear form over a subset of linear equalities. This minimization is global, and the theory allows us to develop a computational method to find the solution by a finite-dimensional linear programming problem.