• 제목/요약/키워드: New Renewable Energy Technology

검색결과 678건 처리시간 0.021초

기술 및 시장을 고려한 최적 탄소자원화 기술 선정방법 (Optimal Carbon Upcycling Technology Selection Method Considering Technology and Market)

  • 이지현;제갈성;조지은
    • 신재생에너지
    • /
    • 제19권1호
    • /
    • pp.41-52
    • /
    • 2023
  • Various carbon upcycling technologies have been proposed and are under development to achieve Korea's carbon neutrality target. Many chemical reactions are under development through various chemical reaction pathways, and different technological maturity levels are shown for each country and company. In this situation, it is essential to establish investment decisions such as research funds and human resources allocation through technological and economic analysis for close commercialization technologies and basic technologies with low technology readiness levels (TRL). Therefore, in this study, the technology development priority for developing carbon upcycling items was selected according to the domestic Carbon Capture & Utilization (CCU) technology roadmap using the stakeholder selection tool released by EU CarbonNext. As a result of the analysis, the TRL level of Korea's major carbon upcycling technologies was analyzed to be lower than that of other carbon resource technologies, and it was considered desirable to invest in mineral carbonization technologies among various candidate technologies.

한국의 신재생에너지 정책의 평가모델 개발 : RPS 및 FIT를 중심으로 (Development of Evaluation Model for the Korean New & Renewable Energy Policies : Focusing on RPS & FIT)

  • 최종재;황찬규;문채주
    • 한국전자통신학회논문지
    • /
    • 제8권9호
    • /
    • pp.1333-1342
    • /
    • 2013
  • 신재생에너지산업의 발전은 에너지원의 문제를 해결하기 위한 필수적인 과제라 할 수 있다. 이에 따라 세계 각국에서 신재생에너지산업을 위해 적극적으로 움직이고 있다. 신재생에너지산업은 아직 산업기반이 약하고, 산업의 특성상 규모의 경제 및 기술개발을 위한 초기 투자가 필요한 경우가 많다. 따라서, 신재생에너지산업을 육성하기 위한 정책이 실행되고 있는데 우리나라 뿐만 아니라 많은 나라에서 대표적으로 실행하는 정책이 RPS와 FIT 정책이다. 신재생에너지산업은 다양한 이해관계와 경제, 사회, 환경, 국제 등의 변수를 동시에 가지고 있으므로 이를 종합적으로 고려한 정책이 필요하다. 신재생에너지산업의 경우 평가의 지표에 해당하는 부분이 많고 고려되어야 할 변수가 많으나, 이를 모두 고려하기 힘들고 고려한다 하더라도 일관된 기준이 마련되어 있지 않은 상황이다. 따라서, 본 연구에서는 신재생에너지정책을 평가하기 위한 평가지표를 개발, 제시한다.

방음벽 PVT의 공기유로 설계를 위한 CFD 시뮬레이션 사전 분석 연구 (Pre-Analysis CFD Simulation of Air Path Design for Soundproof Photovoltaic-Thermal Wall)

  • 김유진;김기봉;이의준;강은철
    • 신재생에너지
    • /
    • 제17권3호
    • /
    • pp.1-7
    • /
    • 2021
  • The Korean government announced various energy policies, such as the to reduce 37% of the business-as-usual (BAU) greenhouse gas emissions by 2030. The policies aim to increase the renewable electricity generation ratio to 20% by 2030. PVT is a hybrid technology, which combines photovoltaic (PV) and solar collectors. It is capable of generating electricity and thermal energy simultaneously. It has a great potential to be used as a renewable and clean solar energy. However, there exists a shortage of space for the installation of PVT systems in Korea. To overcome this, in this paper proposes four types of soundproof wall PVT air channels, which were designed and optimized, based on the CFD (Computation Fluid Dynamic) analysis results. The thermal energy generation for multiple PVT units connected in series and pressure drop sensitivity were analyzed, depending on inlet velocity.

계통유연자원을 활용한 분산에너지 계통접속 한계용량 증대 기술 (Distributed Energy System Connection Limit Capacity Increase Technology Using System Flexible Resources)

  • 박정민
    • 통합자연과학논문집
    • /
    • 제16권4호
    • /
    • pp.139-145
    • /
    • 2023
  • Due to changes in the distribution system and increased demand for renewable energy, interest in technology to increase the limit capacity of distributed energy grid connection using grid flexible resources is also increasing. Recently, the distribution system system is changing due to the increase in distributed power from renewable energy, and as a result, problems with the limited capacity of the distribution system, such as waiting for renewable energy to connect and increased overload, are occurring. According to the power generation facility status report provided by the Korea Power Exchange, of the total power generation capacity of 134,020 MW as of 2021, power generation capacity through new and renewable energy facilities is 24,855 MW, accounting for approximately 19%, and among them, power generation through solar power accounts for a total portion of the total. It was analyzed that the proportion of solar power generation facilities was high, accounting for 75%. In the future, the proportion of new and renewable energy power generation facilities is expected to increase, and accordingly, an efficient operation plan for the distribution system is needed. Advanced country-type NWAs that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power in order to improve distribution network use efficiency without expanding distribution facilities due to the expansion of renewable energy. An integrated operating system is needed. In this study, in order to improve the efficiency of distribution network use without expanding distribution facilities due to the expansion of renewable energy, we developed a method that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power. We want to develop an integrated operation system for NWAs similar to that of advanced countries.

공공의무화 제도에 따른 신재생에너지 보급 실태 분석 (The Supply Status Analysis of New Renewable Energy Based on Public Obligation System)

  • 서상현;이용호;김형진;조영흠;황정하
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.220-225
    • /
    • 2011
  • Based on the supply status statistics of new renewable energy according to public obligation system, current status of overall application centered on solar heat, solar ray, and geothermal heat as energy sources that can be applied to buildings may be analyzed as follows. (1) After the public obligation system, the investment costs on the total construction costs by years were between 5.21% and 7.12%: they were 7.12% in 2004, where the system was initially implemented; and they were gradually declined from 2005 to 2011, 5.76% in average. The ratio of equipment investment per energy sources in the total construction costs was 5.9%, which was slightly more than the obliged ratio. The order of investment costs per energy source was solar ray, geothermal heat, and solar heat. (2) Among the 1,433 sites in the plan of new renewable energy installation based on the public obligation system, "for cultural & social use" was most in target institution, and facilities for education & research was most in use classification, followed by public working, culture & rally, and sports. The number of facilities applied according to the case for planning installation per use classification of the target institution was between 1.1 and 1.5, or 1.4 in average of energy source. Conclusively, the authors of this study investigated overall current status of new renewable energy supply from the analysis of statistic data, and it may be needed of further supplementation of various examinations by visiting investigation and interviews with practitioners based on classification of use of target institutions.

  • PDF

대전지역 건물음영을 고려한 PV 최적각도 산정 (Estimation of Optimal Angle for PV Panels Considering Building's Shadow in Daejeon)

  • 이정태;김현구;강용혁;윤창열;김창기;김진영;김보영
    • 한국태양에너지학회 논문집
    • /
    • 제40권3호
    • /
    • pp.43-52
    • /
    • 2020
  • By blocking irradiance, shadows cast by high-rise buildings in urban areas can reduce the power generation efficiency of PV panels installed on low-rise buildings. As the conventionally installed PV panel is not suitable for the urban environment, which is unfavorable for power generating, a more radical solution is required. This study aims to help solve this problem by estimating the optimal PV panel angle. Using the proposed method, the optimal PV angle was calculated by considering shadows that could be cast by nearby buildings throughout the year, and the correlation between solar shading and elevation angle was discovered based on the calculated data.

AHP를 이용한 신재생에너지 보급화산 제도 평가 (An Assessment on the Regulations for Renewable Energy Diffusion Using the AHP)

  • 이덕기;이의준;최상진;박수억
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.592-599
    • /
    • 2005
  • Renewable energy technology development has been carrying out in 11 different areas so far. Many technologies are being applied to the required areas according to its own characteristics. Before launching the development, these technologies have been evaluated by their commercial effect and contribution to energy supply. In this paper, the impact factors enhancing the distribution of renewable energy were developed to select appropriate diffusion regulations for each technology area. In addition, AHP methodology was introduced to investigate priorities of the regulations along with weights of impact factors.

  • PDF

Backsheet 반사율에 따른 Shingled Mini Module 출력변화에 대한 연구 (A Study on the Output Power of Shingled Mini Module Depending on Reflectance of Backsheets)

  • 조성현;문지연;손형진;전다영;김성현
    • Current Photovoltaic Research
    • /
    • 제8권4호
    • /
    • pp.129-133
    • /
    • 2020
  • It is very important to optimize the reflectance of incident light in solar modules for improving output power and reducing loss of cell-to-module (CTM). It is assumed that a higher reflectance backsheet may improve optical efficiency. However how much output power is related to optical properties by reflectance property of backsheets have not been revealed clearly yet. A total of 3 types of industrial backsheets with 3 type of industrial encapsulants (EVA or POE) were analyzed as fabricated mini modules used shingled cells. According to the type of backsheets, the difference between the highest and lowest average reflectance in the range of 400 nm to 1200 nm was found to be 13.08% by UV-visible spectroscopy. Also, when using the same encapsulant, the maximum gap value of the output power increase was measured by about 3.755 mW% (166.02 mW). The correlation between reflectance and output power was experimentally found by measuring the output property of the fabricated shingled mini modules.

고온고습시험에 의한 멀티 와이어 PV 모듈의 금속 간 화합물 층의 성장에 관한 연구 (A Study on Growth of Intermetallic Compounds Layer of Photovoltaic Module Interconnected by Multi-wires under Damp-heat Conditions)

  • 문지연;조성현;손형진;전다영;김성현
    • Current Photovoltaic Research
    • /
    • 제8권4호
    • /
    • pp.124-128
    • /
    • 2020
  • Output power of photovoltaic (PV) modules installed outdoors decreases every year due to environmental conditions such as temperature, humidity, and ultraviolet irradiations. In order to promote the installation of PV modules, the reliability must be guaranteed. One of the important factors affecting reliability is intermetallic compounds (IMC) layer formed in ribbon solder joint. For this reason, various studies on soldering properties between the ribbon and cell have been performed to solve the reliability deterioration caused by excessive growth of the IMC layer. However, the IMC layer of the PV module interconnected by multi-wires has been studied less than using the ribbon. It is necessary to study soldering characteristics of the multi-wire module for improvement of its reliability. In this study, we analyzed the growth of IMC layer of the PV module with multi-wire and the degradation of output power through damp-heat test. The fabricated modules were exposed to damp-heat conditions (85 ºC and 85 % relative humidity) for 1000 hours and the output powers of the modules before and after the damp-heat test were measured. Then, the process of dissolving ethylene vinyl acetate (EVA) as an encapsulant of the modules was performed to observe the IMC layer. The growth of IMC layer was evaluated using OM and FE-SEM for cross-sectional analysis and EDS for elemental mapping. Based on these results, we investigated the correlation between the IMC layer and output power of modules.