인구 및 세대 구조가 변화면서 점차 대면 관계를 꺼리는 고객의 태도 변화가 정보기술의 발달과 스마트폰의 확산으로 더욱 커지고 있다. 이는 정보기술에 익숙해진 현대 고객들의 소비패턴인 효율성 및 신속성과도 부합되는 것으로, 오프라인 망 중심의 유통회사들이 판매 및 서비스 방식을 언택트로 전환하려는 움직임이 활발해지고 있다. 최근 다양한 분야에서 언택트 서비스가 활성화되고 있지만, 뷰티 제품의 경우 고객의 피부타입 및 상태에 따라 제품 선택이 쉽지 않으므로 비대면을 통해 제품을 추천하기가 쉽지 않다. 이와 관련하여 온라인 뷰티 분야에서 제품 추천을 위한 추천시스템 개발 및 추천 관련 연구들이 수행되었지만, 대부분이 설문조사 방법이나 소셜 데이터를 이용하여 추천 알고리즘을 개발한 연구들이었다. 즉, 고객의 피부타입이나 제품 선호도 등의 실제 사용자 정보를 기반으로 세그먼트를 분류한 연구는 부족하였다. 그리하여, 본 연구에서는 뷰티 분야에서의 언택트 서비스 중의 하나인 모바일 애플리케이션의 고객 정보와 검색 로그 데이터를 기반으로 머신러닝 기법의 K-prototypes 알고리즘을 이용하여 고객 세그먼트를 새롭게 분류하고, 이를 기반으로 언택트 마케팅 전략 방안을 제안한다. 본 연구는 머신러닝 기법을 이용하여 새롭게 고객 세그먼트를 분류함으로써 관련 기존 문헌의 범위를 확장하였다. 더불어, 언택트 서비스라는 새로운 소비 트렌드를 반영하여 고객 세그먼트를 분류하고, 이를 기반으로 뷰티 분야의 언택트 서비스에 활용할 수 있는 구체적인 방안을 제시했다는 실무적 의의가 있다.
현재 다양한 신상품의 잦은 출시로 인해 고객들은 자신이 원하는 신상품을 찾는데 어려움을 겪고 있다. 또한 기업들은 신상품을 구매할 가능성이 높은 고객을 찾는데 많은 노력을 기울이고 있는 상황에서 고객의 선호에 부합하는 신상품을 찾도록 도와주는 추천시스템에 대한 요구가 대두되고 있다. 본 연구는 신상품 추천을 위해 상품 특성을 추출하여 다차원 속성 공간에 표현하고 이를 바탕으로 선호영역(Preference Boundary)를 제시하였다. 다시 말해 고객들이 과거 구매한 상품의 속성을 바탕으로 고객의 선호 영역을 형성하고, 신상품의 속성이 선호 영역 내에 위치하면 추천이 이루어지는 방법을 제시하였다. 선호 영역을 형성하는 과정은 크게 선호영역의 중심점을 구하는 단계와 선호 영역의 범위를 구하는 단계로 구성되는데, 이 연구에서는 선호영역의 범위를 구하는 단계로 t-분포를 이용하는 방법, 중심점과 구매 상품과의 가장 먼 거리와 가까운 거리를 이용하는 방법, 그리고 중심점과 구매 상품들 간의 평균 거리를 이용하는 방법을 제시하였다. 제시된 방법들의 성능을 평가하기 위해 신상품 출시와 구매가 잦은 모바일 이미지 거래 데이터를 이용하여 실험을 진행하였다. 이 논문에서 제시한 각 방법들의 성능을 비교해본 결과 목표 고객의 중심점과 구매 상품과의 가장 먼 거리와 가까운 거리를 이용하는 방법으로 각 상품별 선호영역의 적정한 범위를 구하였을 때, 신상품 추천의 정확도가 향상되는 것으로 분석되었다.
개인화 추천에서 많이 사용되는 협업 필터링은 고객들의 구매이력을 기반으로 유사고객을 찾아 상품을 추천할 수 있는 매우 유용한 기법으로 인식되고 있다. 그러나, 전통적인 협업 필터링 기법은 사용자 간에 직접적인 연결과 공통적인 특징을 기반으로 유사도를 계산하는 방식으로 인해 신규 고객 혹은 상품에 대해 유사도를 계산하기 힘들다는 문제가 제기되어 왔다. 이를 극복하기 위하여, 다른 기법을 함께 사용하는 하이브리드 기법이 고안되기도 하였다. 이런 노력의 하나로서, 사회연결망의 구조적 특성을 적용하여 이런 문제를 해결하려는 시도가 있었다. 이는, 직접적으로 유사성을 찾기 힘든 사용자 간에도 둘 사이에 놓인 유사한 사용자 또는 사용자들을 통해 유추해내는 방식으로 상호 간의 유사성을 계산하는 방식을 적용한 것이다. 즉, 구매 데이터를 기반으로 사용자의 네트워크를 생성하고 이 네트워크 내에서 두 사용자를 간접적으로 이어주는 네트워크의 특성을 기반으로 둘 사이의 유사도를 계산하는 것이다. 이렇게 얻은 유사도는 추천대상 고객이 상품의 추천에 대한 수락여부를 결정하는 척도로 활용될 수 있다. 서로 다른 중심성 척도는 추천성과에 미치는 영향이 서로 다를 수 있다는 점에서 중요한 의미를 갖는다 할 수 있다. 이런 유사도의 계산을 위해서 네트워크의 중심성을 활용할 수 있다. 본 연구에서는 여기서 더 나아가 이런 중심성이 추천성과에 미치는 영향이 추천 알고리즘에 따라서도 다를 수 있다는 데에서 주목하여 수행되었다. 또한, 이런 네트워크 분석을 활용한 추천기법은 신규 고객 혹은 상품뿐만 아니라 전체 고객 혹은 상품으로 그 대상을 넓히더라도 추천 성능을 높이는 데 기여할 것을 기대할 수 있을 것이다. 이런 관점에서 본 연구는 네트워크 모형에서 연결선이 생성되는 것을 이진 분류의 문제로 보고, 추천 모형에 적용할 분류 기법으로 의사결정나무, K-최근접이웃법, 로지스틱 회귀분석, 인공신경망, 서포트 벡터 머신을 선택하고, 온라인 쇼핑몰에서 4년2개월간 수집된 구매 데이터로 실험을 진행하였다. 사회연결망에서 측정된 중심성 척도를 각 분류 기법에 적용하여 생성한 모형을 비교 실험한 결과, 각 모형 별로 중심성 척도의 추천성공률이 서로 다르게 나타남을 확인할 수 있었다.
현대 기업들은 효율성과 생산성을 향상시킬 뿐 아니라 시장 진출을 위해 새로운 기술들을 채택하고 있다. 광고 업계도 전통적인 채널 (라디오, TV 및 인쇄 매체)에서 인터넷, 소셜 미디어, 모바일 기반광고와 같은 새로운 매체로 지속적인 파괴적 혁신을 경험하고 있다. 본 연구는 서울 지하철에 지능형 광고 비즈니스 모델을 제안한 사례이다. 서울은 세계에서 가장 분주 한 지하철 중 하나로서 메트로 네트워크를 통해 마케팅 담당자가 다양한 고객과 잠재 고객 모두와 교류하고 상호 작용할 수 있는 플랫폼이 될 수 있다. 현재의 광고 매체의 대부분은 공간, 조명 등 국부적 한계를 가지고 있으나 본 사례의 지능형 디지털 광고 플랫폼은 데이터로 구동되는 광고를 통해 위치기반 모바일 전자상거래를 제공할 수 있다. 등록된 지하철 카드를 통해 고객 데이터를 분석하고 특정 고객 그룹을 타겟팅하고, 대상 소비자 그룹을 기반으로 광고 사용자를 정의하고, 동영상, 애니메이션, 쿠폰, 문자 등 다양한 광고 형식을 제공 할 수 있다. 위치 정보를 통해 다음역을 탐지하여 지하철 안의 스크린이 다음 정차 할 역의 광고에 우선 순위를 부여하고, 사용자 모바일에서 알림을 수신하도록 선택한 고객은 광고주의 사업장 근처에 접근 할 때 알림을 받게 된다. 또한, 내비게이션 서비스를 통해 지하 쇼핑몰의 고객이 상점, 제품, 시설, 이벤트 등을 검색하고 광고나 추천서비스를 받을 수 있게 한다. 이러한 광고는 고객이 광고를 클릭하면 제품 설명 페이지로 연결되어 전자 상거래로 이어지도록 한다. 이 모델을 통해 개선된 고객 경험뿐만 아니라 지하상가의 중소기업 지원, 새로운 직업 기회, 비즈니스 모델 운영자에 대한 추가 매출 및 광고 유연성 등 새로운 가치 창출이 가능할 것으로 기대된다.
본 연구에서는 COVID-19의 영향과 온라인 시장을 중심으로 구매패턴이 변화하는 현 경영환경의 시대에서 온라인 배송업체의 구매정보와 상품정보를 기반으로 군집분석과 연관성 분석을 실시하였다. 고객군집, 상품군집, 그리고 교차결합을 통해 데이터를 세분화시켜 결합군집을 생성하여 학문적으로 새로운 방안의 군집분석을 시도하였으며, 각각의 군집분석 결과를 토대로 연관성 분석을 하였다. 연관성 분석 결과, 상대적으로 결합군집에서 더 많은 연관 규칙이 도출 되었으며, 중복률은 더 적은 것으로 분석되어 효율성이 매우 높은 것으로 나타났다. 이는 고객의 니즈에 맞게 상품을 추천하기 위해서는 결합군집이 가장 적합한 모델이라고 판단된다. 결합군집 모델은 소비자에겐 시간 절약과 유용한 정보를 제공하면서, 해당 업체에는 판매량을 증가시키는 등의 긍정적인 효과를 가져올 것으로 사료된다. 향후 연구과제로써, 다양한 특성을 갖고 있는 다수의 온라인 배송업체들을 대상으로 비교·분석한다면 좀 더 명확하고 유의미한 연구결과를 도출할 수 있을것으로 기대된다.
This study checks the conceptual definition of domestic book curation which is still in the beginning stage, the necessity of developing service and business, domestic and overseas case of relevant service. Further, the problem of book recommendation service and the difficulty anticipated in the embodiment of service are investigated together and the business model as new IT service is suggested to supplement them. Specifically, the collection of book information and customer information (interest and purchase pattern) and the procedure of mining the collected information and the process of embodying visualization was presented in the sector of service in the first place. Then, the technical transfer of developed solution and the construction cost and the method to impose commission over contents sales are presented in the sector of business. Diverse social and economic effects are expected to realize by developing and utilizing such services, namely, promoting the distribution of excellent book which were kept in dead storage so far due to lack of marketing support, recommendation readers the proper books which are convenient and necessary.
From the past to the present, reviews have had much influence on consumers' purchasing decisions. Companies are making various efforts, such as introducing a review incentive system to increase the number of reviews. Recently, as various types of reviews can be left, reviews have begun to be recognized as interesting new content. This way, reviews have become essential in creating loyal customers. Therefore, research and utilization of reviews are being actively conducted. Some studies analyze reviews to discover customers' needs, studies that upgrade recommendation systems using reviews, and studies that analyze consumers' emotions and attitudes through reviews. However, research that predicts the future using reviews is insufficient. This study used a dataset consisting of two reviews written in pairs with differences in usage periods. In this study, the direction of consumer product evaluation is predicted using KoBERT, which shows excellent performance in Text Deep Learning. We used 7,233 reviews collected to demonstrate the excellence of the proposed model. As a result, the proposed model using the review text and the star rating showed excellent performance compared to the baseline that follows the majority voting.
Utilizing pump selection softwares is becoming a new general trend in pump industries, substituting the old fashioned pump catalogs. One of the most powerful pump selection softwares is developed, which features pump performance viscosity correction function as well as pump selection based on the exact pump performance curves, NPSH warning, automatic determination of impeller diameter cutting to meet the customer's performance specification, performance simulation for the rpm and diameter variation, standard motor recommendation according to the motor standards and enclosure types and automatic pump datasheet generation for sales submission, automatic pump drawings and dimension generation for installation check and part preparation. This software provides pump distributors and customers with a quick, easy and exact pump selection, various performance curves review (system curves, performance curve of series or parallel operation) of the selected pumps.
기존의 협업필터링 추천시스템 연구는 상품에 대한 고객의 평점(rating)이나 구매 여부 데이터로부터 하나의 프로파일을 생성하고 이를 기반으로 추천 성능을 향상시킬 수 있는 새로운 알고리즘을 개발하는 위주로 진행되어 왔다. 그러나 빅데이터 환경이 도래하면서 기업이 수집할 수 있는 고객 데이터가 풍부해지고 다양해짐에 따라, 보다 정확하게 고객의 선호도나 행태를 파악하는 것이 가능하게 되었고 이러한 데이터, 즉 퍼스널 빅데이터(personal big data)를 추천시스템에 활용하는 연구의 필요성이 대두되고 있다. 본 연구에서는 마케팅의 시장세분화 이론에 근거하여 퍼스널 빅데이터로부터 고객의 선호도나 행태를 다양한 관점에서 표현할 수 있는 5종의 다중 프로파일(multimodal profile)을 개발하고, 이를 활용하여 협업필터링 추천시스템의 성능을 개선하고자 한다. 제안하는 5종의 다중 프로파일은 프로파일 통합 유사도, 개별 프로파일 유사도 평균, 개별 프로파일 유사도 가중 평균이라는 세 가지 앙상블 기법을 통해 협업필터링의 이웃(neighborhood) 탐색과정에 적용된다. 실제 퍼스널 빅데이터에 본 연구에서 제안하는 방법론을 적용한 결과, 단일 프로파일을 사용하는 협업필터링 알고리즘보다 추천 성능이 상당히 개선되었으며 앙상블 방법 중에서는 개별 프로파일 유사도 가중 평균 기법이 가장 높은 추천 성능을 보여주었다. 본 연구는 빅데이터 환경에서 추천시스템을 개발하고자 할 때, 어떠한 성격의 데이터로부터 고객의 특성을 규명하는 프로파일을 만들고 이를 어떻게 결합하여 사용하는 것이 효과적인 지 처음으로 제안하였다는 점에서 그 의의가 있다.
고객의 선호도는 시간에 따라 변화하지만 기존 협업필터링기법(Collaborative Filtering : CF)은 정적인 데이터만을 다룬다. 이는 기존 CF 기법이 특정 기간 동안 고객의 구매 여부만 고려할 뿐 고객의 구매순서를 사용하지 않기 때문이다. 따라서 기존 CF 기법은 고객의 동적인 데이터인 구매순서를 고려함으로써 추천의 품질을 높일 가능성이 있다. 본 연구에서는 고객의 구매순서를 활용함으로써 CF 기법의 추천 품질을 향상시키는 새로운 상품추천 방법론을 제안한다. 즉, 군집분석기법인 자기조직화지도(Self-Organizing Map : SOM)를 활용하여 고객의 구매순서를 파악한 후 연관규칙탐사(Association Rule Mining : ARM)를 사용하여 고객들의 구매순서 중 일정 정도의 통계적인 타당성을 갖는 구매순서 패턴을 찾아내어 이를 추천 시에 활용한다. 대형 백화점의 구매자료에 적용하여 제안한 방법론의 효과성을 실험한 결과 제안한 방법론이 기존 CF 기법보다 우수한 추천품질을 가지고 있음이 실증적으로 확인되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.