• Title/Summary/Keyword: New Car Development

Search Result 250, Processing Time 0.03 seconds

Development of the Integrated Fuel Cell Monitoring System (통합 연료전지모니터링 시스템 개발)

  • KIM, HYUNJUN;YEOM, SANGCHUL;AHN, BYUNGKI;KIM, SAEHOON;KUM, YEONGBEOM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.241-246
    • /
    • 2015
  • The interest of New Renewable Energy is increasing globally because of the increment of the uncertainty for the energy's supply and demand, and the increment of the frequency in weather anomaly and its damages. One of the New Renewable Energies, Hydrogen receives attention as the future energy that can deal with global environment regulation. Fuel Cell Electric Vehicle (FCEV) is an environment-friendly vehicle that uses Hydrogen as fuel. The electric power for FCEV is generated by chemical reaction with Oxygen from the air and Hydrogen. Hyundai Motor Company (HMC) has developed a proprietary fuel cell system since 2005. In 2012, HMC is the first car maker that mass-produces the ix35 FCEV to the worldwide such as North America, Europe, etc. In order to develop and improve the FCEV technology, data acquisition and analysis of the driving vehicle information is essential. Therefore, the monitoring system is developed, which is consist of datalogger, Automatic Vehicle Location (AVL) server and main server. Especially, WCDMA technology is integrated into the system which enables the data analysis without any restriction of time and region. The main function of the system is the analysis of the driving pattern and the component durability, and the safety monitoring. As a result, ix35 FCEV has successfully developed by using the developed monitoring system. The system is going to take an advantage of development in the future FCEV technology.

Proposal of methodology for AI-based new product development: ambidexterity approach (인공지능 기반 신제품 개발 방법론 제안: 양손잡이(Ambidexterity) 접근)

  • Chung, Doohee
    • Journal of Technology Innovation
    • /
    • v.29 no.4
    • /
    • pp.161-196
    • /
    • 2021
  • This study presents a new methodology for developing AI-based products. It identifies the distinctive attributes of AI innovation that are different from existing methods, and presents a product design process and methodology reflecting these attributes. This study emphasizes that AI product development should be oriented toward an ambidexterity approach. This study proposes a design process and specific development method for AI-based products that including steps such as technology push oriented idea generation with morphological approach, market pull oriented consumer requirements analysis, product design refinement, etc. In order to verify the practical applicability of this methodology, an AI-based car infotainment system development strategy is derived as a case study. 13 innovative ideas were generated by the morphological approach and expert review based on technological possibility, and a total of 6 quality requirements were derived as new product development strategies through the analysis of consumer requirements by combining Kano and TOPSIS. The methodology proposed in this research paper can be usefully utilized for companies to pioneer new markets through AI-based products or to expand the market by upgrading existing products or services.

Development of Design and Technology for Fuel cell Carbody with Composite Suitable to the Urban Transportation System (도심의 교통시스템에 적합한 복합소재의 연료전지 차체설계기술 개발)

  • Oh Kyung-Won;Lee Sang-Jin;Jeong Jong-Cheol;Park Mi-Yung;Cho Sea-Hyun;Mok Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.434-439
    • /
    • 2005
  • In order to prevent the global warming, Korea has had a ratification to the Kyoto Protocol which is specified the air pollution level should be lower the condition of the year 1990 until the year 2012, in hence the traffic system produced mostly the air pollution has been faced to big change. According to the reinforcement of higher level for environmental condition, alternative way to the conventional traffic system is required, so that is fuel cell technology of commercialized R&D program used by hydrogen fuel, and further for the optimized high energy efficiency it has been considered the advanced development of traffic system used the conventional railroad system. But it is moreover expected the huge amount of initial investment, so at the current, next new traffic system is needed. This study is for the improvement of urban traffic system in domestic which should be seriously changed for environmental friendly through the reduction of air pollution by fuel gases of vehicle and human convenience to be easily approached. In hence it is proposed the development of superior high efficiency-'Fuel-cell Rubber-tired Tram' system manufactured by the composite car-body.

  • PDF

Development of an Optimization Model and Algorithm Based on Transportation Problem with Additional Constraints (추가 제약을 갖는 수송문제를 활용한 공화차 배분 최적화 모형 및 해법 개발)

  • Park, Bum Hwan;Kim, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.833-843
    • /
    • 2016
  • Recently, in the field of rail freight transportation, the number of trains dedicated for shippers has been increasing. These dedicated trains, which run on the basis of a contract with shippers, had been restricted to the transportation of containers, or so called block trains. Nowadays, such commodities have extended to cement, hard coal, etc. Most full freight cars are transported by dedicated trains. But, for empty car distribution, the efficiency still remains questionable because the distribution plan is manually developed by dispatchers. In this study, we investigated distribution models delineated in the KTOCS system which was developed by KORAIL as well as mathematical models considered in the state-of-the-art. The models are based on optimization models, especially the network flow model. Here we suggest a new optimization model with a framework of the column generation approach. The master problem can be formulated into a transportation problem with additional constraints. The master problem is improved by adding a new edge between the supply node and the demand node; this edge can be found using a simple shorted path in the time-space network. Finally, we applied our algorithm to the Korean freight train network and were able to find the total number of empty car kilometers decreased.

A Numerical Study of Energy Mechanism for Development of Road Generator System (도로용 발전장치 개발을 위한 에너지 발생기구 해석)

  • Lee, Suk Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.935-945
    • /
    • 2014
  • This paper presents a new road generative system that employs a pad of preventive overspeed or tollgate. The system consists of pad, shaft, torsional damper, oneway-clutch, gear system, and electricity generator components. When the car driven through the road generation system, it occurred to surplus energy in the DC power. In order to maximize the power of electricity energy harvester, the simulation software is developed. It is used to determine parametric dimension for optimal design with the theoretically calculated results from the simulation software. The transient responses at the conditions of low and high vehicle speed are compared with the calculated results as torque, impact force, power, out energy etc. Consequently, before design a road generation system, the analysis of simulation results shows that the proposed concept and system has efficiency and confidence.

Development of Air Supply System for FCEV Bus (연료전지 버스용 공기공급시스템 개발)

  • Park, Chang-Ho;Cho, Kyung-Seok;Kim, Woo-June;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF

DEVELOPMENT OF EMEVATOR GROUP SUPERVISIRY SYSTEM WITH FUZZY MADE

  • Park, Hee-Chul;Lee, See-Hun;Choi, Don;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.390-394
    • /
    • 1994
  • A elevator group supervisory system is designed to perform efficient operation of multiple elevators, and its basic function is to assign an appropriate elevator to a given hall-cell. In this paper, in order to improve elevator group control performance, we propose a new dispatching system which includes fuzzy multi-attribute decision making(MADM). In most cases, the purpose of group control is to maximize control goals as much as possible. Unfortunately, the decision of optimal elevator to a given hall cell is made with very uncertain information of the system, and some of control goals are related each other. The uncertainty is mainly resulted from car calls generated by serving hall calls. A fuzzy MADM algorithm is proposed to deal with these problems to improve system performance.

  • PDF

Development of a 3D Shape Construction Software Using Unorganized Point Data (점 데이터를 이용한 3차원 형상의 구현을 위한 소프트웨어 개발)

  • 채희창
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Reverse engineering is an emerging technology to obtain CAD models from existing physical parts in the case that CAD models are not available or paras are changed an(1 modified so that new CAD models for final parts are necessary. Reverse engineering helps designers to quickly generate computer interpretable data from existing Physical objects So it is applying for field of Rapid Prototyping NC Processing CAE, Inspection and so on. The objective of this study is to develop the software that deals with unorganized point data and quickly obtains CAD model. In this paper, several models such as human\`s bone, car, are experimented by the proposed methods.

Principle of Design and Performance of the Torque Sensor for a Electrical Power Steering (전동식 파워스티어링(EPS)용 토크센서의 설계원리와 성능테스트)

  • Lee Eung-Shin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.121-126
    • /
    • 2005
  • This paper describes the attributes, performance and development status of a high performance capacitive torque sensor intended for use in a electric power steering (EPS) system. The EPS system is composed of torque sensor, ECU, motor, gears and etc. Among the elements, torque sensor in the steering column is one of the core technologies. The new capacitive torque sensor in this paper is developed differently from working principle and mechanical structure compare to extant torque sensors in market and patent. Based on the result of numerical analysis, a experimental equipment is made which is composed of a test jig and a capacitive sensor and validity of numerical analysis and feasibility of the torque sensor are verified.

A Study on the Key Performance Factors of Passenger Airbag and Injury Risk Prediction Technique Development (동승석 에어백 핵심 성능 인자 및 상해위험도 예측 기법 개발에 대한 연구)

  • Park, Dongkyou
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.130-135
    • /
    • 2013
  • Until now, passenger airbag design is based on the referred car design and many repetitive crash tests have been done to meet the crash performance. In this paper, it was suggested a new design process of passenger airbag. First, key performance factors were determined by analyzing the injury risk effectiveness of each performance factor. And it was made a relationship between injury risk and performance factor by using the response surface model. By using this one, it can be predicted the injury risk of head and neck. Predicted injury risk of optimal design was obtained through this injury risk prediction model and it was verified by FE analysis result within 18% error of head and 9% error of neck. It was shown that a target crash performance can be met by controlling the key performance factors only.