• Title/Summary/Keyword: New Calculation Framework

Search Result 44, Processing Time 0.031 seconds

Derivation of Distributed Generation Impact Factor in a Networked System in Case of Simultaneous Outputs of Multiple Generation Sites

  • Lim, Jung-Uk;Runolfsson, Thordur
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.78-83
    • /
    • 2006
  • A new measure, the distributed generation impact factor (DGIF), is used for evaluating the impact of newly introduced distributed generators on a networked distribution or a transmission system. Distribution systems are normally operated in a radial structure. But the introduction of distributed generation needs load flow calculation to analyze the networked system. In the developed framework, the potential share of every generation bus in each line flow of a networked system can be directly evaluated. The developed index does not require the solution of power flow equations to evaluate the effect of the distributed generation. The main advantage of the developed method lies in its capability of considering simultaneous outputs of multiple generation sites.

Computations of Compressible Two-phase Flow using Accurate and Efficient Numerical Schemes

  • Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.13-17
    • /
    • 2006
  • RoeM and AUSMPW+ schemes are two of the most accurate and efficient schemes which are recently developed for the analysis of single phase gas dynamics. In this paper, we developed two-phase versions of these schemes for the analysis of gas-liquid large density ratio two-phase flow. We adopt homogeneous equilibrium model (HEM) using mass fraction to describe different two phases. In the Eulerian-Eulerian framework, HEM assumes dynamic and thermal equilibrium of the two phases in the same computational mesh. From the mixture equation of state (EOS), we derived new shock-discontinuity sensing term (SDST), which is commonly used in RoeM and AUSMPW+ for the stable numerical flux calculation. The proposed two-phase versions of RoeM and AUSMPW+ schemes are applied on several air-water two-phase test problems. In spite of the large discrepancy of material properties such as density, enthalpy, and speed of sound, the numerical results show that both schemes provide very satisfactory solutions.

  • PDF

An Object-Level Feature Representation Model for the Multi-target Retrieval of Remote Sensing Images

  • Zeng, Zhi;Du, Zhenhong;Liu, Renyi
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.65-77
    • /
    • 2014
  • To address the problem of multi-target retrieval (MTR) of remote sensing images, this study proposes a new object-level feature representation model. The model provides an enhanced application image representation that improves the efficiency of MTR. Generating the model in our scheme includes processes, such as object-oriented image segmentation, feature parameter calculation, and symbolic image database construction. The proposed model uses the spatial representation method of the extended nine-direction lower-triangular (9DLT) matrix to combine spatial relationships among objects, and organizes the image features according to MPEG-7 standards. A similarity metric method is proposed that improves the precision of similarity retrieval. Our method provides a trade-off strategy that supports flexible matching on the target features, or the spatial relationship between the query target and the image database. We implement this retrieval framework on a dataset of remote sensing images. Experimental results show that the proposed model achieves competitive and high-retrieval precision.

A New Method of Profit Maximization Based on the Theory of Constraints (제약이론 기반의 기업이익 최적화 방법론)

  • Moon, Je-Chang;Rim, Suk-Chul
    • IE interfaces
    • /
    • v.14 no.4
    • /
    • pp.356-364
    • /
    • 2001
  • Production Improvement Method in TOC consists of five steps, but it is very difficult for most firms to implement it because it lacks the detailed methods at each step. This paper suggests some of detailed methods to implement the TOC. In the first step, computer simulation is used to identify the constraints in production lines. Subsequently, ASP, AUT, and CM calculation are defined for the second step, which are helpful to exploit the company's constraints. We also suggest the OEE method to effectively exploit the constraints of production lines in the factory. Finally the TOC/OEE procedure is suggested to optimize the investment in the fourth step. As an illustrative example, we introduce a case of a wafer manufacturer to adopt the suggested methods. The benefits of implementating the suggested methods are addressed in the framework of the balanced scorecard.

  • PDF

Calculation of Avoided Generation Cost of a IPP Based on Generation Expansion Plan of Korea (전원개발계획에 기초한 민자발전소의 회피발전비용 계산에 관한 연구)

  • Park, Young-Moon;Kim, Dong-Gee;Won, Jong-Ryul;Park, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1153-1155
    • /
    • 1997
  • Electric business all over the world is dramatically changed from vertically integrated monopoly to competition systems. Also, independent power producers(IPPs) will start their commercial operation from the year 2001 in Korea. In this regard, determination of the transaction cost between IPPs and electric utilities will be a hot issue, and electric utilities requires a new framework to support their decision-making. This paper presents the concept of the avoided cost which can be used for economic studies. This paper also describes a novel algorithm to evaluate the avoided cost of a IPP. The case studies are performed on the basis of the official generation expansion plan of Korea by using the Wien Automatic System Planning Package(WASP).

  • PDF

On the Prediction Method of Added Resistance of Ships in Regular Head Waves (선박의 파랑중 부가저항 계산법에 관한 연구)

  • Jae-Moon,Lew;Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.14-20
    • /
    • 1986
  • Through the momentum considerations, added resistance of a ship in regular waves are studied within the framework of the linear potential theory for a ship moving with a constant mean forward speed. In this paper, added resistance in head waves with comparably small wave length is focused by modifying the Marou's method. The strength of the singularities for the Kochin function is modified by considering the diffraction potentials. Slender body theory is used to determine the diffraction potentials as Adachi did. The response of a ship motion is found by using new strip method. For the purpose of comparison with the present method, calculation was also conducted by Marou's and Gerritsma-Beukelman's method. Numerical calculations are performed for five different models, that is, series 60(Cb=0.6, 0.7, 0.8), S7-175 container ship and blunt bow model. Numerical results obtained by the present method show relatively good corelations comparing with experimental results in the region under considerations.

  • PDF

New Bubble Size Distribution Model for Cryogenic High-speed Cavitating Flow

  • Ito, Yutaka;Tomitaka, Kazuhiro;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.700-710
    • /
    • 2008
  • A Bubble size distribution model has been developed for the numerical simulation of cryogenic high-speed cavitating flow of the turbo-pumps in the liquid fuel rocket engine. The new model is based on the previous one proposed by the authors, in which the bubble number density was solved as a function of bubble size at each grid point of the calculation domain by means of Eulerian framework with respect to the bubble size coordinate. In the previous model, the growth/decay of bubbles due to pressure difference between bubble and liquid was solved exactly based on Rayleigh-Plesset equation. However, the unsteady heat transfer between liquid and bubble, which controls the evaporation/condensation rate, was approximated by a theoretical solution of unsteady heat conduction under a constant temperature difference. In the present study, the unsteady temperature field in the liquid around a bubble is also solved exactly in order to establish an accurate and efficient numerical simulation code for cavitating flows. The growth/decay of a single bubble and growth of bubbles with nucleation were successfully simulated by the proposed model.

  • PDF

Ground-Motion Prediction Equations based on refined data for dynamic time-history analysis

  • Moghaddam, Salar Arian;Ghafory-Ashtiany, Mohsen;Soghrat, Mohammadreza
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.779-807
    • /
    • 2016
  • Ground Motion Prediction Equations (GMPEs) are essential tools in seismic hazard analysis. With the introduction of probabilistic approaches for the estimation of seismic response of structures, also known as, performance based earthquake engineering framework; new tasks are defined for response spectrum such as the reference criterion for effective structure-specific selection of ground motions for nonlinear time history analysis. One of the recent efforts to introduce a high quality databank of ground motions besides the corresponding selection scheme based on the broadband spectral consistency is the development of SIMBAD (Selected Input Motions for displacement-Based Assessment and Design), which is designed to improve the reliability of spectral values at all natural periods by removing noise with modern proposed approaches. In this paper, a new global GMPE is proposed by using selected ground motions from SIMBAD to improve the reliability of computed spectral shape indicators. To determine regression coefficients, 204 pairs of horizontal components from 35 earthquakes with magnitude ranging from Mw 5 to Mw 7.1 and epicentral distances lower than 40 km selected from SIMBAD are used. The proposed equation is compared with similar models both qualitatively and quantitatively. After the verification of model by several goodness-of-fit measures, the epsilon values as the spectral shape indicator are computed and the validity of available prediction equations for correlation of the pairs of epsilon values is examined. General consistency between predictions by new model and others, especially, in short periods is confirmed, while, at longer periods, there are meaningful differences between normalized residuals and correlation coefficients between pairs of them estimated by new model and those are computed by other empirical equations. A simple collapse assessment example indicate possible improvement in the correlation between collapse capacity and spectral shape indicators (${\varepsilon}$) up to 20% by selection of a more applicable GMPE for calculation of ${\varepsilon}$.

K Nearest Neighbor Joins for Big Data Processing based on Spark (Spark 기반 빅데이터 처리를 위한 K-최근접 이웃 연결)

  • JIAQI, JI;Chung, Yeongjee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1731-1737
    • /
    • 2017
  • K Nearest Neighbor Join (KNN Join) is a simple yet effective method in machine learning. It is widely used in small dataset of the past time. As the number of data increases, it is infeasible to run this model on an actual application by a single machine due to memory and time restrictions. Nowadays a popular batch process model called MapReduce which can run on a cluster with a large number of computers is widely used for large-scale data processing. Hadoop is a framework to implement MapReduce, but its performance can be further improved by a new framework named Spark. In the present study, we will provide a KNN Join implement based on Spark. With the advantage of its in-memory calculation capability, it will be faster and more effective than Hadoop. In our experiments, we study the influence of different factors on running time and demonstrate robustness and efficiency of our approach.

Development of the Optimal Signal Control Algorithm Based Queue Length (대기길이 기반의 최적 신호제어 알고리즘 개발)

  • 이철기;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.135-148
    • /
    • 2002
  • In this paper, a queue length calculation algorithm using image detectors has been proposed. The algorithm produces the queue length using a pair of image detectors installed both on upstream and on downstream of a corridor. In addition, a new framework for controlling the traffic signal system based on queue length has been presented. More specifically, the scheme of determining the cycle time and green split using the queue lengths has been proposed. To validate the results, a simulation study was conducted with a network environment. Results showed that the proposed method gave better operational performance than a traditional method. However, additional validation effort is necessary in order to apply the real traffic conditions.