• Title/Summary/Keyword: New Algorithm

Search Result 11,723, Processing Time 0.037 seconds

The research of new algorithm to improve prediction accuracy of recommender system in electronic commercey

  • Kim, Sun-Ok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.185-194
    • /
    • 2010
  • In recommender systems which are used widely at e-commerce, collaborative filtering needs the information of user-ratings and neighbor user-ratings. These are an important value for recommendation in recommender systems. We investigate the in-formation of rating in NBCFA (neighbor Based Collaborative Filtering Algorithm), we suggest new algorithm that improve prediction accuracy of recommender system. After we analyze relations between two variable and Error Value (EV), we suggest new algorithm and apply it to fitted line. This fitted line uses Least Squares Method (LSM) in Exploratory Data Analysis (EDA). To compute the prediction value of new algorithm, the fitted line is applied to experimental data with fitted function. In order to confirm prediction accuracy of new algorithm, we applied new algorithm to increased sparsity data and total data. As a result of study, the prediction accuracy of recommender system in the new algorithm was more improved than current algorithm.

A Study on the Variable -Structure Control Using New Switching Variables (새로운 스위칭 변수를 이용한 가변구조제어에 관한 연구)

  • 이주장;이흥규;이병일
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1586-1593
    • /
    • 1988
  • A new control scheme for the variable-structure control system using new time-varying switching variable is presented in this paper. It is proposed to have new algorithm for reducing the reaching time on a switching hyperplane by modifying the Morgan's algorithm. From the results of the simulation, it is concluded the proposed control algorithm yields smaller control inputs (without disturbance) and ripples (with disturbance) than that obtained by Morgan's algorithm in the steady-state. This control algorithm can be applied to proper control systems having sensitive effects on disturbances, due to the robustness.

  • PDF

A New Carrier Phase-Independent Discrete STR Algorithm for Sampled Receiver (샘플수신기를 위한 반송파위상에 독립적인 이산 STR 알고리듬)

  • 김의묵;조병록;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.4
    • /
    • pp.561-571
    • /
    • 1993
  • In this paper, a new discrete Symbol Timing Recovery (STR) algorithm, is proposed. This algorithm is derived from the optimum estimation theory. The algorithm combines the advantages of Mueller and $M\"{u}ller$ algorithm and Gardner algorithm, and avoids some of their shortcomings. The implementation of the new timing detector is simple and the combined operations of Carrier Recovery (CR) -STR is possible because the operation of the new STR is independent of the carrier phase. On the other hand, the behavior of nonlinear characteristics in the new algorithm is analyzed and explained. The performance evaluation is accomplished in detail by numerical calculations and Monte-Carlo simulations. In these respects, this algorithm is similar to Gardner's algorithm, but in tracking performance due to pattern jitter at small rolloff, the proposed algorithm is superior to Gardner's algorithm.

  • PDF

Machine-part Group Formation Methodology for Flexible Manufacturing Systems (유연생산시스템(FMS)에서의 기계-부품그룹 형성기법)

  • Ro, In-Kyu;Kwon, Hyuck-Chun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 1991
  • This research is concerned with Machine-Part Group Formation(MPGF) methodology for Flexible Manufacturing Systems(FMS). The purpose of the research is to develop a new heuristic algorithm for effectively solving MPGF problem. The new algorithm is proposed and evaluated by 100 machine-part incidence matrices generated. The performance measures are (1) grouping ability of mutually exclusive block-diagonal form. (2) number of unit group and exceptional elements, and (3) grouping time. The new heuristic algorithm has the following characteristics to effectively conduct MPGF : (a) The mathematical model is presented for rapid forming the proper number of unit groups and grouping mutually exclusive block-diagonal form, (b) The simple and effective mathematical analysis method of Rank Order Clustering(ROC) algorithm is applied to minimize intra-group journeys in each group and exceptional elements in the whole group. The results are compared with those from Expert System(ES) algorithm and ROC algorithm. The results show that the new algorithm always gives the group of mutually exclusive block-diagonal form and better results(85%) than ES algorithm and ROC algorithm.

  • PDF

The Enhancement of Learning Time in Fuzzy c-means algorithm (학습시간을 개선한 Fuzzy c-means 알고리즘)

  • 김형철;조제황
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.113-116
    • /
    • 2001
  • The conventional K-means algorithm is widely used in vector quantizer design and clustering analysis. Recently modified K-means algorithm has been proposed where the codevector updating step is as fallows: new codevector = current codevector + scale factor (new centroid - current codevector). This algorithm uses a fixed value for the scale factor. In this paper, we propose a new algorithm for the enhancement of learning time in fuzzy c-means a1gorithm. Experimental results show that the proposed method produces codebooks about 5 to 6 times faster than the conventional K-means algorithm with almost the same Performance.

  • PDF

Improvement of Ant Colony Optimization Algorithm to Solve Traveling Salesman Problem (순회 판매원 문제 해결을 위한 개미집단 최적화 알고리즘 개선)

  • Jang, Juyoung;Kim, Minje;Lee, Jonghwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.

Smooth Walking Robot Using Genetic Algorithm (유전알고리즘을 이용한 유연한 보행로봇)

  • 한경수;김상범;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.450-453
    • /
    • 2002
  • This paper is concerned with smooth walking robot using genetic algorithm. The new walking algorithm is proposed and we simulated and experimented the algorithm. We suggested the leg trajectory algorithm and balancing trajectory algorithm by applying genetic algorithm. First the leg trajectory algorithm generated the smooth trajectory. Also the balancing trajectory generated the optimal trajectory. We compared results with the previous walking algorithm. It showed that the new proposed algorithm generated the better walking trajectory.

  • PDF

The Development of a New Distributed Multiobjective Evolutionary Algorithm with an Inherited Age Concept (계승적 나이개념을 가진 다목적 진화알고리즘 개발)

  • 강영훈;변증남
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.689-694
    • /
    • 2001
  • Recently, several promising multiobjective evolutionary algorithm such as SPEA. NSGA-II, PESA, and SPEA2 have been developed. In this paper, we also propose a new multiobjective evolutionary algorithm that compares to them. In the algorithm proposed in this paper, we introduce a novel concept, “inherited age” and total algorithm is executed based on the inherited age concept. Also, we propose a new sharing algorithm, called objective classication sharing algorithm(OCSA) that can preserve the diversity of the population. We will show the superior performance of the proposed algorithm by comparing the proposed algorithm with other promising algorithms for the test functions.

  • PDF

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.

A K-means-like Algorithm for K-medoids Clustering

  • Lee, Jong-Seok;Park, Hae-Sang;Jun, Chi-Hyeok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.51-54
    • /
    • 2005
  • Clustering analysis is a descriptive task that seeks to identify homogeneous groups of objects based on the values of their attributes. In this paper we propose a new algorithm for K-medoids clustering which runs like the K-means algorithm. The new algorithm calculates distance matrix once and uses it for finding new medoids at every iterative step. We evaluate the proposed method using real and synthetic data and compare with the results of other algorithms. The proposed algorithm takes reduced time in computation and better performance than others.

  • PDF