• Title/Summary/Keyword: Neutronics

Search Result 96, Processing Time 0.026 seconds

SIMMER-IV application to safety assessment of severe accident in a small SFR

  • H. Tagami;Y. Tobita
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.873-879
    • /
    • 2024
  • A sodium-cooled fast reactor (SFR) core has a potential of prompt criticality due to a change of core material distribution during a severe accident, and the resultant energy release has been one of the safety issues of SFRs. In this study, the safety assessment of an unprotected loss-of-flow (ULOF) in a small SFR (SSFR) has been performed using the SIMMER-IV computer code, which couples the models of space- and time-dependent neutronics and multi-component, multi-field thermal hydraulics in three dimensions. The code, therefore, is applicable to the simulations of transient behaviors of extended disrupted core material motion and its reactivity effects during the transition phase (TP) of ULOF, including a potential of prompt-criticality power excursions driven by fuel compaction. Several conservative assumptions are used in the TP analysis by SIMMER-IV. It was found out that one of the important mechanisms that drives the reactivity-inserting fuel motion was sodium vapor pressure resulted from a fuel-coolant interaction (FCI), which itself was non-energetic local phenomenon. The uncertainties relating to FCI is also evaluated in much conservative way in the sensitivity analysis. From this study, the ULOF characteristics in an SSFR have been understood. Occurrence of recriticality events under conservative assumptions are plausible, but their energy releases are limited.

The applicability study and validation of TULIP code for full energy range spectrum

  • Wenjie Chen;Xianan Du;Rong Wang;Youqi Zheng;Yongping Wang;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4518-4526
    • /
    • 2023
  • NECP-SARAX is a neutronics analysis code system for advanced reactor developed by Nuclear Engineering Computational Physics Laboratory of Xi'an Jiaotong University. In past few years, improvements have been implemented in TULIP code which is the cross-section generation module of NECP-SARAX, including the treatment of resonance interface, considering the self-shielding effect in non-resonance energy range, hyperfine group method and nuclear library with thermal scattering law. Previous studies show that NECP-SARAX has high performance in both fast and thermal spectrum system analysis. The accuracy of TULIP code in fast and thermal spectrum system analysis is demonstrated preliminarily. However, a systematic verification and validation is still necessary. In order to validate the applicability of TULIP code for full energy range, 147 fast spectrum critical experiment benchmarks and 170 thermal spectrum critical experiment benchmarks were selected from ICSBEP and used for analysis. The keff bias between TULIP code and reference value is less than 300 pcm for all fast spectrum benchmarks. And that bias keeps within 200 pcm for thermal spectrum benchmarks with neutron-moderating materials such as polyethylene, beryllium oxide, etc. The numerical results indicate that TULIP code has good performance for the analysis of fast and thermal spectrum system.

Coupled neutronics/thermal-hydraulic analysis of ANTS-100e using MCS/RAST-F two-step code system

  • Tung Dong Cao Nguyen;Tuan Quoc Tran;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4048-4056
    • /
    • 2023
  • The feasibility of using the Monte Carlo code MCS to generate multigroup cross sections for nodal diffusion simulations RAST-F of liquid metal fast reactors is investigated in this paper. The performance of the MCS/RAST-F code system is assessed using steady-state simulations of the ANTS-100e core. The results show good agreement between MCS/RAST-F and MCS reference solutions, with a keff difference of less than 77 pcm and root-mean-square differences in radial and axial power of less than 0.5% and 0.25%, respectively. Furthermore, the MCS/RAST-F reactivity feedback coefficients are within three standard deviations of the MCS coefficients. To validate the internal thermal-hydraulic (TH) feedback capability in RAST-F code, the coupled neutronic/TH1D simulation of ANTS-100e is performed using the case matrix obtained from MCS branch calculations. The results are compared to those obtained using the MARS-LBE system code and show good agreement with relative temperature differences in fuel and coolant of less than 0.8%. This study demonstrates that the MCS/RAST-F code system can produce accurate results for core steady-state neutronic calculations and for coupled neutronic/TH simulations.

Development and Verification of AMBIKIN2D, A Two Dimensional Kinetics Code for Fluid Fuel Reactors (유동핵연료원자로를 위한 이차원 동특성 코드 AMBIKIN2D 개발 및 검증)

  • Lee, Young-Joon;Oh, See-Kee
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 2008
  • The neutron kinetic analysis methods for the molten-salt reactors are quite different from those for conventional solid-fuel reactors, which do not take into account the flowing-fuel-induced neutronics effects. Therefore, for dynamics and safety analyses of the molten-salt reactor systems, the conventional kinetics codes would not be appropriate to accurately predict its transient behaviors. A point-kinetics with flowing- fuel model has been used to assess the fluid-fuel reactor system safety, but recognized as not to be sufficient to simulate spatial distributions of delayed-neutron precursors and neutron populations during transients for given detail reactor models. In order to meet this requirement, AMBIKIND, a 2-group, 2-dimensional neutron kinetics code suitable for the molten-salt reactor systems was developed. This paper explains the code's theoretical and numerical descriptions and, as a part of its verification, includes some simulation results of MSRE stability experiments. Even though the present reactor model does not include the recirculation effect of the fuel-salt through the reactor system, the AMBIKIN2D code should be able to predict the power and phase shift at various power levels and reactivity insertions with better accuracy.

Simulations of BEAVRS benchmark cycle 2 depletion with MCS/CTF coupling system

  • Yu, Jiankai;Lee, Hyunsuk;Kim, Hanjoo;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.661-673
    • /
    • 2020
  • The quarter-core simulation of BEAVRS Cycle 2 depletion benchmark has been conducted using the MCS/CTF coupling system. MCS/CTF is a cycle-wise Picard iteration based inner-coupling code system, which couples sub-channel T/H (thermal/hydraulic) code CTF as a T/H solver in Monte Carlo neutron transport code MCS. This coupling code system has been previously applied in the BEAVRS benchmark Cycle 1 full-core simulation. The Cycle 2 depletion has been performed with T/H feedback based on the spent fuel materials composition pre-generated by the Cycle 1 depletion simulation using refueling capability of MCS code. Meanwhile, the MCS internal one-dimension T/H solver (MCS/TH1D) has been also applied in the simulation as the reference. In this paper, an analysis of the detailed criticality boron concentration and the axially integrated assembly-wise detector signals will be presented and compared with measured data based on the real operating physical conditions. Moreover, the MCS/CTF simulated results for neutronics and T/H parameters will be also compared to MCS/TH1D to figure out their difference, which proves the practical application of MCS into the BEAVRS benchmark two-cycle depletion simulations.

Application of CUPID for subchannel-scale thermal-hydraulic analysis of pressurized water reactor core under single-phase conditions

  • Yoon, Seok Jong;Kim, Seul Been;Park, Goon Cherl;Yoon, Han Young;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.54-67
    • /
    • 2018
  • There have been recent efforts to establish methods for high-fidelity and multi-physics simulation with coupled thermal-hydraulic (T/H) and neutronics codes for the entire core of a light water reactor under accident conditions. Considering the computing power necessary for a pin-by-pin analysis of the entire core, subchannel-scale T/H analysis is considered appropriate to achieve acceptable accuracy in an optimal computational time. In the present study, the applicability of in-house code CUPID of the Korea Atomic Energy Research Institute was extended to the subchannel-scale T/H analysis. CUPID is a component-scale T/H analysis code, which uses three-dimensional two-fluid models with various closure models and incorporates a highly parallelized numerical solver. In this study, key models required for a subchannel-scale T/H analysis were implemented in CUPID. Afterward, the code was validated against four subchannel experiments under unheated and heated single-phase incompressible flow conditions. Thereafter, a subchannel-scale T/H analysis of the entire core for an Advanced Power Reactor 1400 reactor core was carried out. For the high-fidelity simulation, detailed geometrical features and individual rod power distributions were considered in this demonstration. In this study, CUPID shows its capability of reproducing key phenomena in a subchannel and dealing with the subchannel-scale whole core T/H analysis.

A New Formulation of the Reconstruction Problem in Neutronics Nodal Methods Based on Maximum Entropy Principle (노달방법의 중성자속 분포 재생 문제에의 최대 엔트로피 원리에 의한 새로운 접근)

  • Na, Won-Joon;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.193-204
    • /
    • 1989
  • This paper develops a new method for reconstructing neutron flux distribution, that is based on the maximum entropy Principle in information theory. The Probability distribution that maximizes the entropy Provides the most unbiased objective Probability distribution within the known partial information. The partial information are the assembly volume-averaged neutron flux, the surface-averaged neutron fluxes and the surface-averaged neutron currents, that are the results of the nodal calculation. The flux distribution on the boundary of a fuel assembly, which is the boundary condition for the neutron diffusion equation, is transformed into the probability distribution in the entropy expression. The most objective boundary flux distribution is deduced using the results of the nodal calculation by the maximum entropy method. This boundary flux distribution is then used as the boundary condition in a procedure of the imbedded heterogeneous assembly calculation to provide detailed flux distribution. The results of the new method applied to several PWR benchmark problem assemblies show that the reconstruction errors are comparable with those of the form function methods in inner region of the assembly while they are relatively large near the boundary of the assembly. The incorporation of the surface-averaged neutron currents in the constraint information (that is not done in the present study) should provide better results.

  • PDF

A Scheme of Better Utilization of PWR Spent Fuels (가압경수로 사용후핵연료 이용확대 방안연구)

  • Chung, B.J.;Kang, C.S.
    • Nuclear Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.165-173
    • /
    • 1991
  • The recycle of PWR spent fuels in a CANDU reactor, so called the tandem fuel cycle is Investigated in this study. This scheme of utilizing Pm spent fuels will ease the shortage of spent fuel storage capacity as well as will improve the use of uranium resources. The minimum modification to the design of present CANDU reactor is seeked in the recycle. Nine different fuel types are considered in this work and are classified into two categories: refabrication and reconfiguration For refabrication, PWR spent fuels are processed and refabricated into the present 37 rod lattice structure of fuel bundle, and for reconfiguration, meanwhile, spent fuels are simply disassembled and rods are cut to fit into the present grid configuration of fuel bundle without refabrication. For each fuel option, the neutronics calculation of lattice was conducted to evaluate the allowable burnup and power distribution. The fuel cycle cost of each option was also computed to assess the economic justification. The result show that most tandem fuel cycle options considered in this study are technically feasible as well as economically viable.

  • PDF

A Systems Engineering Approach to Multi-Physics Analysis of a CEA Withdrawal Accident

  • Jan, Hruskovic;Kajetan Andrzej, Rey;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.58-74
    • /
    • 2022
  • Deterministic accident analysis plays a central role in the nuclear power plant (NPP) safety evaluation and licensing process. Traditionally the conservative approach opted for the point kinetics model, expressing the reactor core parameters in the form of reactivity and power tables. However, with the current advances in computational power, high fidelity multi-physics simulations using real-time code coupling, can provide more detailed core behavior and hence more realistic plant's response. This is particularly relevant for transients where the core is undergoing reactivity anomalies and uneven power distributions with strong feedback mechanisms, such as reactivity initiated accidents (RIAs). This work addresses a RIA, specifically a control element assembly (CEA) withdrawal at power, using the multi-physics analysis tool RELAP5/MOD 3.4/3DKIN. The thermal-hydraulics (TH) code, RELAP5, is internally coupled with the nodal kinetics (NK) code, 3DKIN, and both codes exchange relevant data to model the nuclear power plant (NPP) response as the CEA is withdrawn from the core. The coupled model is more representative of the complex interactions between the thermal-hydraulics and neutronics; therefore the results obtained using a multi-physics simulation provide a larger safety margin and hence more operational flexibility compared to those of the point kinetics model reported in the safety analysis report for APR1400. The systems engineering approach is used to guide the development of the work ensuring a systematic and more efficient execution.

Homogenized cross-section generation for pebble-bed type high-temperature gas-cooled reactor using NECP-MCX

  • Shuai Qin;Yunzhao Li;Qingming He;Liangzhi Cao;Yongping Wang;Yuxuan Wu;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3450-3463
    • /
    • 2023
  • In the two-step analysis of Pebble-Bed type High-Temperature Gas-Cooled Reactor (PB-HTGR), the lattice physics calculation for the generation of homogenized cross-sections is based on the fuel pebble. However, the randomly-dispersed fuel particles in the fuel pebble introduce double heterogeneity and randomness. Compared to the deterministic method, the Monte Carlo method which is flexible in geometry modeling provides a high-fidelity treatment. Therefore, the Monte Carlo code NECP-MCX is extended in this study to perform the lattice physics calculation of the PB-HTGR. Firstly, the capability for the simulation of randomly-dispersed media, using the explicit modeling approach, is developed in NECP-MCX. Secondly, the capability for the generation of the homogenized cross-section is also developed in NECP-MCX. Finally, simplified PB-HTGR problems are calculated by a two-step neutronics analysis tool based on Monte Carlo homogenization. For the pebble beds mixed by fuel pebble and graphite pebble, the bias is less than 100 pcm when compared to the high-fidelity model, and the bias is increased to 269 pcm for pebble bed mixed by depleted fuel pebble. Numerical results show that the Monte Carlo lattice physics calculation for the two-step analysis of PB-HTGR is feasible.