• Title/Summary/Keyword: Neutron source

Search Result 318, Processing Time 0.037 seconds

The optimization study of core power control based on meta-heuristic algorithm for China initiative accelerator driven subcritical system

  • Jin-Yang Li;Jun-Liang Du;Long Gu;You-Peng Zhang;Cong Lin;Yong-Quan Wang;Xing-Chen Zhou;Huan Lin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.452-459
    • /
    • 2023
  • The core power control is an important issue for the study of dynamic characteristics in China initiative accelerator driven subcritical system (CiADS), which has direct impact on the control strategy and safety analysis process. The CiADS is an experimental facility that is only controlled by the proton beam intensity without considering the control rods in the current engineering design stage. In order to get the optimized operation scheme with the stable and reliable features, the variation of beam intensity using the continuous and periodic control approaches has been adopted, and the change of collimator and the adjusting of duty ratio have been proposed in the power control process. Considering the neutronics and the thermal-hydraulics characteristics in CiADS, the physical model for the core power control has been established by means of the point reactor kinetics method and the lumped parameter method. Moreover, the multi-inputs single-output (MISO) logical structure for the power control process has been constructed using proportional integral derivative (PID) controller, and the meta-heuristic algorithm has been employed to obtain the global optimized parameters for the stable running mode without producing large perturbations. Finally, the verification and validation of the control method have been tested based on the reference scenarios in considering the disturbances of spallation neutron source and inlet temperature respectively, where all the numerical results reveal that the optimization method has satisfactory performance in the CiADS core power control scenarios.

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

Performance of different absorber materials and move-in/out strategies for the control rod in small rod-controlled pressurized water reactor: A study based on KLT-40 model

  • Zhiqiang Wu;Jinsen Xie;Pengyu Chen;Yingjie Xiao;Zining Ni;Tao Liu;Nianbiao Deng;Aikou Sun;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2756-2766
    • /
    • 2024
  • Small rod-controlled pressurized water reactors (PWR) are the ideal energy source for vessel propulsion, benefiting from their high reactivity control efficiency. Since the control rods (CRs) increase the complexity of reactivity control, this paper seeks to study the performance of CRs in small rod-controlled PWRs to extend the lifetime and reduce power offset due to CRs. This study investigates CR grouping, move-in/out strategies, and axially non-uniform design effects on core neutron physics metrics. These metrics include axial offset (AO), core lifetime (CL), fuel utilization (FU), and radial power peaking factor (R-PPF). To simulate the movement of the CRs, a "Critical-CR-burnup" function was developed in OpenMC. In CR designs, the CRs are grouped into three banks to study the simultaneous and prioritized move-in/out strategies. The results show CL extension from 590 effective full power days (EFPDs) to 638-698 EFPDs. A lower-worth prioritized strategy minimizes AO and the extremum values decrease from -0.69 and + 0.81 to -0.28 and + 0.51. Although an axially non-uniform CR design can improve AO at the beginning of cycle (BOC), considering the overall CR worth change is crucial, as a significant decrease can adversely impact axial power distribution during the middle of cycle (MOC).

Three-dimensional thermal-hydraulics/neutronics coupling analysis on the full-scale module of helium-cooled tritium-breeding blanket

  • Qiang Lian;Simiao Tang;Longxiang Zhu;Luteng Zhang;Wan Sun;Shanshan Bu;Liangming Pan;Wenxi Tian;Suizheng Qiu;G.H. Su;Xinghua Wu;Xiaoyu Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4274-4281
    • /
    • 2023
  • Blanket is of vital importance for engineering application of the fusion reactor. Nuclear heat deposition in materials is the main heat source in blanket structure. In this paper, the three-dimensional method for thermal-hydraulics/neutronics coupling analysis is developed and applied for the full-scale module of the helium-cooled ceramic breeder tritium breeding blanket (HCCB TBB) designed for China Fusion Engineering Test Reactor (CFETR). The explicit coupling scheme is used to support data transfer for coupling analysis based on cell-to-cell mapping method. The coupling algorithm is realized by the user-defined function compiled in Fluent. The three-dimensional model is established, and then the coupling analysis is performed using the paralleled Coupling Analysis of Thermal-hydraulics and Neutronics Interface Code (CATNIC). The results reveal the relatively small influence of the coupling analysis compared to the traditional method using the radial fitting function of internal heat source. However, the coupling analysis method is quite important considering the nonuniform distribution of the neutron wall loading (NWL) along the poloidal direction. Finally, the structure optimization of the blanket is carried out using the coupling method to satisfy the thermal requirement of all materials. The nonlinear effect between thermal-hydraulics and neutronics is found during the blanket structure optimization, and the tritium production performance is slightly reduced after optimization. Such an adverse effect should be thoroughly evaluated in the future work.

Source Term Characterization for Structural Components in $17{\times}17$ KOFA Spent Fuel Assembly ($17{\times}17$ KOFA 사용후핵연료집합체내 구조재의 방사선원항 특성 분석)

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Heui-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 2010
  • Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core with different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be $1.40{\times}10^{15}$ Bequerels, 236 Watts, $4.34{\times}10^9m^3$-water, respectively, at 10 years after discharge. Those values correspond to 0.7 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 20~45 % and 30~45 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important.

A Suitability Study on the Indicator Isotopes for Graphite Isotope Ratio Method (GIRM) (흑연 동위원소 비율법의 지표 동위 원소 적합성 연구)

  • Han, Jinseok;Jang, Junkyung;Lee, Hyun Chul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • The Graphite Isotope Ratio Method (GIRM) can verify non-proliferation of nuclear weapon by estimating the total plutonium production in a graphite-moderated reactor. Using the reactor, plutonium is generated and accumulated through the 238U neutron capture reaction, and impurities in the graphite are converted to nuclides due to the nuclear reaction. Therefore, the amount of plutonium production and concentration of the impurities are correlated. However, the plutonium production cannot be predicted using only the absolute concentration of the impurities. It can only be predicted when the initial concentration of the impurities is obtained because the concentration, at a certain time, depends on it. Nevertheless, the ratios of the isotopes in an element are known regardless of the impurity of an element in the graphite moderator. Thus, the correlation between the isotope ratio and amount of plutonium produced helps predict plutonium production in a graphite-moderated reactor. Boron, Lithium, Chlorine, Titanium, and Uranium are known as indicator elements in the GIRM. To assess whether the correlation between the indicator isotope and amount of plutonium produced is independent of the initial concentration of the impurities, four different impurity compositions of graphite were used. 10B/11B, 36Cl/35Cl, 48Ti/49Ti, and 235U/238U had a consistent correlation with the cumulative plutonium production, regardless of the initial impurity concentration of the graphite, because these isotopes were not generated through the nuclear reaction of other elements. On the other hand, the correlation between 6Li/7Li and plutonium production depended on the initial concentration of the impurities in graphite. Although 7Li can be produced through the neutron capture reaction of 6Li, the (n, α) reaction of 10B was the major source of 7Li. Therefore, the initial concentration of 10B affected the production of 7Li, making Li unsuitable as an indicator element for the GIRM.

Rapidly and Accurately Processing of Low Melting Block for Shielding of Radiotherapy (방사선(放射線) 치료(治療)의 신속정확(迅速正確)을 위한 저온용융(低溫熔融) 차폐물(遮蔽物)의 제작(製作)과 응용(應用))

  • Chu, S.S.;Lee, D.H.;Park, C.Y.
    • Journal of Radiation Protection and Research
    • /
    • v.4 no.1
    • /
    • pp.14-20
    • /
    • 1979
  • For accurate and easily shielding irregular shaped organ, its minimized penumbra region and a low melting point alloy 'Lead Y' and synchronizing instrument have been developed. The 'Lead Y' is the quaternary eutectic alloy and it is composed of Lead 30.0% Tin 11.5% Bismuth 48 5% Cadmium 10.0% The density of its at $22^{\circ}C$ is $9.8g/cm^3$ and the melting temperature has $40^{\circ}C\;to\;68^{\circ}C$. The thickness of 'Lead Y' for perfect shielding of Co-60 gamma ray and LINAC 10MeV x-ray is 6cm and 7cm respectively. The 'Lead Y' shielding block is casted directly on the styrofoam from which is cut with hot wire of synchronizer device. The special features and advantages of the Lead Y shielding block could be summarized as follows; 1. The shielding block for radiotherapy is rapidly processed only with boiling water and styrofoam. 2. It is not injure one's health and not danger of a fire, because of not generating of any metals vapor and evil smelling. 3. It is very effective to minimize secondary penumbra for the protection of healthy tissue from unnecessary ionizing radiation regardless of the magnification source to skin distance. 4. The HVL of the Lead Y is 1.2cm for Co-60 gamma ray and it's shielding effect is almost same as the pure lead block. 5. The hardness of Lead Y is 1.5 times higher than lead block. 6. It's reavailability is higher than lead block and then one block of Lead Y is reavailable about 30 to 40 times. 7. It is usefull for shielding of x-ray, gamma ray, beta-ray, electron and neutron radiation. 8. The materials for Lead Y are easy to acquire with reasonable price and tractable.

  • PDF

Evaluation on the Radiological Shielding Design of a Hot Cell Facility (핫셀시설의 방사선 안전성 평가)

  • 조일제;국동학;구정회;정원명;유길성;이은표;박성원
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • The hot cell facility for research activities related to the lithium reduction of spent fuel, which is designed to permit safe handling of source materials with radioactivity levels up to 1,385 TBq, is planned to be built. To meet this goal, the facility is designed to keep gamma and neutron radiation lower than the recommended dose-rate in normally occupied areas. The calculations peformed with QAD-CGGP and MCNP-4C are used to evaluate the proposed engineering design concepts that would provide acceptable dose-rates during a normal operation in hot cell facility. The maximum effective gamma dose-rates on the surfaces of the facility at operation area and at service area calculated by QAD-CGGP are estimated to be $2.10{\times}10^{-3}, 2.97{\times}10^{-3} and 1.01{\times}10{-1}$ mSv/h, respectively. And those calculated by MCNP-4C are $1.60{\times}10^{-3}, 2.99{\times}10^{-3} and 7.88{\times}10^{-2}$ mSv/h, respectively, The dose-rates contributed by neutrons are one order of magnitude less than that of gamma sources. Therefore, it is confirmed that the radiological design for hot cell facility satisfies the Korean criterion of 0.01 mSv/h for the operation area and 0.15 mSv/h for the service (maintenance) area.

  • PDF