• Title/Summary/Keyword: Neutron shield

Search Result 59, Processing Time 0.027 seconds

Shielding design and analyses of the cold neutron guide hall for the KIPT neutron source facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.989-995
    • /
    • 2018
  • Argonne National Laboratory of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine, and its commissioning process is underway. The facility will be used for researches, producing medical isotopes, and training young nuclear specialists. The neutron source facility is designed with a provision to include a cryogenically cooled moderator system-a cold neutron source (CNS). This CNS provides low-energy neutrons, which will be used in the scattering experiment and material structures analysis. Cold neutron guides, coated with reflective material for the low-energy neutrons, will be used to transport the cold neutrons to the experimental site. The cold neutron guides would keep the cold neutrons within certain energy and angular space concentrated inside, while most of the gamma rays and high-energy neutrons are not affected by the cold neutron guides. For the KIPT design, the cold neutron guides need to extend several meters outside the main shield of the facility, and curved guides will also be used to remove the gamma and high-energy neutron. The neutron guides should be installed inside a shield structure to ensure an acceptable biological dose in the facility hall. Heavy concrete is the selected shielding material because of its acceptable performance and cost. Shield design analysis was carried out for the CNS guide hall. MCNPX was used as the major computation tool for the design analysis, with neutron and gamma dose calculated separately. Weight windows variance reduction technique was also used in the shield design. The goal of the shield design is to keep the total radiation dose below the $5.0{\mu}Sv/hr$ guideline outside the shield boundary. After a series of iterative MCNPX calculations, the shield configuration and parameters of CNS guide hall were determined and presented in this article.

Electron Accelerator Shielding Design of KIPT Neutron Source Facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.785-794
    • /
    • 2016
  • The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ~0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper.

Occupational radiation exposure control analyses of 14 MeV neutron generator facility: A neutronic assessment for the biological and local shield design

  • Swami, H.L.;Vala, S.;Abhangi, M.;Kumar, Ratnesh;Danani, C.;Kumar, R.;Srinivasan, R.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1784-1791
    • /
    • 2020
  • The 14 MeV neutron generator facility is being developed by the Institute for Plasma Research India to conduct the lab scale experiments related to Indian breeding blanket system for ITER and DEMO. It will also be utilized for material testing, shielding experiments and development of fusion diagnostics. Occupational radiation exposure control is necessary for the all kind of nuclear facilities to get the operational licensing from governing authorities and nuclear regulatory bodies. In the same way, the radiation exposure for the 14 MeV neutron generator facility at the occupational worker area and accessible zones for general workers should be under the permissible limit of AERB India. The generator is designed for the yield of 1012 n/s. The shielding assessment has been made to estimate the radiation dose during the operational time of the neutron generator. The facility has many utilities and constraints like ventilation ducts, accessible doors, accessibility of neutron generator components and to conduct the experiments which make the shielding assessment challenging to provide proper safety for occupational workers and the general public. The neutron and gamma dose rates have been estimated using the MCNP radiation transport code and ENDF -VII nuclear data libraries. The ICRP-74 fluence to dose conversion coefficients has been used for the assessment. The annual radiation exposure has been assessed by considering 500 h per year operational time. The provision of local shield near to neutron generator has been also evaluated to reduce the annual radiation doses. The comprehensive results of radiation shielding capability of neutron generator building and local shield design have been presented in the paper along with detailed maps of radiation field.

Shielding Design Optimization of the HANARO Cold Neutron Triple-Axis Spectrometer and Radiation Dose Measurement (냉중성자 삼축분광장치의 차폐능 최적화 설계 및 선량 측정)

  • Ryu, Ji Myung;Hong, Kwang Pyo;Park, J.M. Sungil;Choi, Young Hyeon;Lee, Kye Hong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.21-29
    • /
    • 2014
  • A new cold neutron triple-axis spectrometer (Cold-TAS) was recently constructed at the 30 MWth research reactor, HANARO. The spectrometer, which is composed of neutron optical components and radiation shield, required a redesign of the segmented monochromator shield due to the lack of adequate support of its weight. To shed some weight, lowering the height of the segmented shield was suggested while adding more radiation shield to the top cover of the monochromator chamber. To investigate the radiological effect of such change, we performed MCNPX simulations of a few different configurations of the Cold-TAS monochromator shield and obtained neutron and photon intensities at 5 reference points just outside the shield. Reducing the 35% of the height of the segmented shield and locating lead 10 cm from the bottom of the top cover made of polyethylene was shown to perform just as well as the original configuration as radiation shield excepting gamma flux at two points. Using gamma map by MCNPX, it was checked that is distribution of gamma. Increased flux had direction to the top and it had longer distance from top of segmented shield. However, because of reducing the 35% of the height, height of dissipated gamma was lower than original geometry. Reducing the 35% of the height of the segmented shield and locating lead 10cm from the bottom of the top cover was selected. After changing geometry, radiation dose was measured by TLD for confirming tester's safety at any condition. Neutron(0.21 ${\mu}Svhr^{-1}$) and gamma(3.69 ${\mu}Svhr^{-1}$) radiation dose were satisfied standard(6.25 ${\mu}Svhr^{-1}$).

Investigating the Fluence Reduction Option for Reactor Pressure Vessel Lifetime Extension

  • Kim, Jong-Kyung;Shin, Chang-Ho;Seo, Bo-Kyun;Kim, Myung-Hyun;Kim, Dong-Kyu;Lee, Goung-Jin;Oh, Su-Jin
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.408-422
    • /
    • 1999
  • To reduce the fast neutron fluence which deteriorates the RPV integrity, additional shields were assumed to be installed at the outer core structures of the Kori Unit 1 reactor, and its reduction effects were examined. Full scope Monte Carlo simulation with MCNP4A code was made to estimate the fast neutron fluence at the RPV. An optimized design option was found from various choices in geometry and material for shield structure. It was expected that magnitude of fast neutron fluence would be reduced by 39% at the circumferential weld of the RPV, resulting in extension of plant lifetime by 4.6 EFPYs based on the criterion of PTS requirement It was investigated that the nuclear characteristics and thermal hydraulic factors at the internal core were only negligibly influenced by the installation of additional shield structure.

  • PDF

Shield Material Consideration in the LAR Tokamak Reactor

  • Hong, B.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.314-314
    • /
    • 2010
  • For the optimal design of a tokamak-type reactor, self-consistent determination of a radial build of reactor systems is important and the radial build has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor systems. In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the shield should provide sufficient protection for the superconducting TF coil and the shield plays a key role in determining the size of a reactor. To determine the radial build of a reactor, neutronic effects such as tritium breeding in the blanket, nuclear heating, and radiation damage to toroidal field (TF) coil has to be included in the systems analysis. In this work, the outboard blanket only is considered where tritium self-sufficiency is possible by using an inboard neutron reflector instead of breeding blanket. The reflecting shield should provide not only protection for the superconducting TF coil but also improved neutron economy for the tritium breeding in outboard blanket. Tungsten carbide, metal hydride such as titanium hydride and zirconium hydride can be used for improved shielding performance and thus smaller shield thickness. With the use of advanced technology in the shield, conceptual design of a compact superconducting LAR reactor with aspect ratio of less than 2 will be presented as a viable power plant.

  • PDF

Fabrication and Evaluation of Radiation Shielding Property of Epoxy Resin-Type Neutron Shielding Materials (에폭시수지계 중성자 차폐재의 제조 및 방사선 차폐능 평가)

  • Cho, Soo-Haeng;Yoon, Jeong-Hyoun;Choi, Byung-I1;Do, Jae-Bum;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.2
    • /
    • pp.77-83
    • /
    • 1997
  • Epoxy resin-type neutron shielding materials, KNS(Kaeri Neutron Shield)-101, KNS-102, and KNS-103 have been fabricated to be used in spent fuel shipping cask. The base material is epoxy resin, and polypropylene, aluminium hydroxide, and boron carbide are added. These shielding materials offer good fluidity at processing, which makes it possible to apply this resin shield to complicated geometric shapes such as shipping cask. The shielding property of these shielding materials for shipping cask for loading 28 PWR spent fuel assemblies has been evaluated. ANISN code is used to evaluate the shielding property of the shipping cask with the thickness of the three neutron shielding materials greater than 10 cm. As a result of analysis, the maximum calculated dose rate at the radial surface of the cask is determined to be $300{\mu}Sv/h$ and the maximum calculated dose rate at 100 cm from the cask is $97{\mu}Sv/h$. These dose rates remain within allowable values specified in related regulations.

  • PDF

Estimation of Neutron Absorption Ratio of Energy Dependent Function for $^{157}Gd$ in Energy Region from 0.003 to 100 eV by MCNP-4B Code

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.23-25
    • /
    • 2009
  • Gd-157 material has very large neutron capture cross section in the thermal region. So it is very useful to shield material for thermal neutrons. Futhermore, in the neutron capture experiment and calculation, the neutron absorption and scattering are very important. Especially these effects are conspicuous in the resonance energy region and below the thermal energy region. In the case of very narrow resonance, the effect of scattering is to be more considerable factor. In the present study, we obtained energy dependent neutron absorption ratios of natural indium in energy region from 0.003 to 100 keV by MCNP-4B Code. The coefficients for neutron absorption was calculated for circular type and 1 mm thickness. In the lower energy region, neutron absorption is larger than higher region, because of large capture cross section (1/v). Furthermore it seems very different neutron absorption in the large resonance energy region. These results are very useful to decide the thickness of sample and shielding materials.

  • PDF

Effectiveness of the neutron-shield nanocomposites for a dual-purpose cask of Bushehr's Water-Water Energetic Reactor (VVER) 1000 nuclear-power-plant spent fuels

  • Rezaeian, Mahdi;Kamali, Jamshid;Ahmadi, Seyed Javad;Kiani, Mohammad Amin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1563-1570
    • /
    • 2017
  • In order to perform dry interim storage and transportation of the spent-fuel assemblies of the Bushehr Nuclear Power Plant, dual-purpose casks can be utilized. The effectiveness of different neutron-shield materials for the dual-purpose cask was analyzed through a set of calculations carried out using the Monte Carlo N-Particle (MCNP) code. The dose rate for the dual-purpose cask utilizing the recently developed materials of $epoxy/clay/B_4C$ and $epoxy/clay/B_4C/carbon$ fiber was less than the allowable radiation level of 2 mSv/h at any point and 0.1 mSv/h at 2 m from the external surface of the cask. By utilization of $epoxy/clay/B_4C$ instead of an ethylene glycol/water mixture, the dose rates on the side surface of the cask due to neutron sources and consequent secondary gamma rays will be reduced by 17.5% and 10%, respectively. The overall dose rate in this case will be reduced by 11%.

Neutron Shielding Analysis for a Spent Fuel Container Using XSDRN, ONEDANT and MCNP Codes (XSDRN, ONEDANT및 MCNP에 의한 사용후 핵연료 용기의 중성자 차폐 해석)

  • Kim, Kyo-Youn;Lee, Tae-Young;Ha, Chung-Woo;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.1
    • /
    • pp.46-55
    • /
    • 1989
  • Neutron shielding for a spent fuel container was analized using the Monte Carlo code MCNP coupled with discrete ordinates codes, XSDRN and ONEDANT. The ORIGEN-S code was used to determine the fixed neutron source, and the spectral source information for MCNP were obtained from a 10 group XSDRN calculation and a 27 group ONEDANT calculation. When the depleted uranium shield was used, the results from ONEDANT and XSDRN calculations agreed with the MCNP results within 10% and 20%, respectively. Depleted uranium appears more effective than lead or steel as a neutron shield.

  • PDF