• 제목/요약/키워드: Neutron facilities

검색결과 55건 처리시간 0.024초

고리 1호기의 콘크리트 내 36Cl 및 41Ca의 방사화재고량 평가 (Inventory Estimation of 36Cl and 41Ca in Concrete of Kori Unit 1)

  • 장미;임종명;김현철;김창종
    • 방사성폐기물학회지
    • /
    • 제17권1호
    • /
    • pp.121-126
    • /
    • 2019
  • 원자력발전소 해체과정에서 방사화 재고량에 대한 평가는 방사선 환경에 정보를 제공함으로써 해체 계획을 수립하는데 중요한 정보를 제공한다. 원자로 운전 정지 후 원자로 및 관계시설에서의 축적된 방사능은 노심 구조물, 반사체 및 차폐체 등의 구조재가 중성자 조사에 의해 방사화된것이다. 방사화생성물 중 $^{36}Cl$$^{41}Ca$ 은 반감기와 화학적 물리학적 특성에 의해 해체 처분 관점에서 매우 중요한 핵종이며 이에 따라 본 연구에서는 차폐 콘크리트 내 생성량을 평가하였다. MCNPX 코드를 사용하여 중성자속과 반응단면적을 계산하였으며 이 결과를 토대로 ORIGEN2 코드를 사용하여 방사화생성물의 양을 평가하였다.

Demonstration of the Effectiveness of Monte Carlo-Based Data Sets with the Simplified Approach for Shielding Design of a Laboratory with the Therapeutic Level Proton Beam

  • Lai, Bo-Lun;Chang, Szu-Li;Sheu, Rong-Jiun
    • Journal of Radiation Protection and Research
    • /
    • 제47권1호
    • /
    • pp.50-57
    • /
    • 2022
  • Background: There are several proton therapy facilities in operation or planned in Taiwan, and these facilities are anticipated to not only treat cancer but also provide beam services to the industry or academia. The simplified approach based on the Monte Carlo-based data sets (source terms and attenuation lengths) with the point-source line-of-sight approximation is friendly in the design stage of the proton therapy facilities because it is intuitive and easy to use. The purpose of this study is to expand the Monte Carlo-based data sets to allow the simplified approach to cover the application of proton beams more widely. Materials and Methods: In this work, the MCNP6 Monte Carlo code was used in three simulations to achieve the purpose, including the neutron yield calculation, Monte Carlo-based data sets generation, and dose assessment in simple cases to demonstrate the effectiveness of the generated data sets. Results and Discussion: The consistent comparison of the simplified approach and Monte Carlo simulation results show the effectiveness and advantage of applying the data set to a quick shielding design and conservative dose assessment for proton therapy facilities. Conclusion: This study has expanded the existing Monte Carlo-based data set to allow the simplified approach method to be used for dose assessment or shielding design for beam services in proton therapy facilities. It should be noted that the default model of the MCNP6 is no longer the Bertini model but the CEM (cascade-exciton model), therefore, the results of the simplified approach will be more conservative when it was used to do the double confirmation of the final shielding design.

An investigative study of enrichment reduction impact on the neutron flux in the in-core flux-trap facility of MTR research reactors

  • Xoubi, Ned;Darda, Sharif Abu;Soliman, Abdelfattah Y.;Abulfaraj, Tareq
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.469-476
    • /
    • 2020
  • Research reactors in-core experimental facilities are designed to provide the highest steady state flux for user's irradiation requirements. However, fuel conversion from highly enriched uranium (HEU) to low enriched uranium (LEU) driven by the ongoing effort to diminish proliferation risk, will impact reactor physics parameters. Preserving the reactor capability to produce the needed flux to perform its intended research functions, determines the conversion feasibility. This study investigates the neutron flux in the central experimental facility of two material test reactors (MTR), the IAEA generic10 MW benchmark reactor and the 22 MW s Egyptian Test and Research Reactor (ETRR-2). A 3D full core model with three uranium enrichment of 93%, 45%, and 20% was constructed utilizing the OpenMC particle transport Monte Carlo code. Neutronics calculations were performed for fresh fuel, the beginning of life cycle (BOL) and end of life cycle (EOL) for each of the three enrichments for both the IAEA 10 MW generic reactor and core 1/98 of the ETRR-2 reactor. Criticality calculations of the effective multiplication factor (Keff) were executed for each of the twelve cases; results show a reasonable agreement with published benchmark values for both reactors. The thermal, epithermal and fast neutron fluxes were tallied across the core, utilizing the mesh tally capability of the code and are presented here. The axial flux in the central experimental facility was tallied at 1 cm intervals, for each of the cases; results for IAEA 10 MW show a maximum reduction of 14.32% in the thermal flux of LEU to that of the HEU, at EOL. The reduction of the thermal flux for fresh fuel was between 5.81% and 9.62%, with an average drop of 8.1%. At the BOL the thermal flux showed a larger reduction range of 6.92%-13.58% with an average drop of 10.73%. Furthermore, the fission reaction rate was calculated, results showed an increase in the peak fission rate of the LEU case compared to the HEU case. Results for the ETRR-2 reactor show an average increase of 62.31% in the thermal flux of LEU to that of the HEU due to the effect of spectrum hardening. The fission rate density increased with enrichment, resulting in 34% maximum increase in the HEU case compared to the LEU case at the assemblies surrounding the flux trap.

경수로 구조재 내 불순물 조성 및 함량이 중성자 방사화 핵종 재고량에 미치는 영향 분석 (The Effects of Impurity Composition and Concentration in Reactor Structure Material on Neutron Activation Inventory in Pressurized Water Reactor)

  • 차길용;김순영;이재민;김용수
    • 방사성폐기물학회지
    • /
    • 제14권2호
    • /
    • pp.91-100
    • /
    • 2016
  • 경수로 원전을 대상으로 원전 내 방사화 대상 물질인 스테인리스강, 탄소강 및 콘크리트의 불순물 정보 적용여부에 따른 방사화 핵종 재고량을 계산하였다. 본 연구에서 탄소강은 압력용기 물질에 사용되었고, 스테인리스강은 압력용기 내부 물질에 사용되었으며, 일반 콘크리트가 생체 차폐체에 사용되었다. 금속 물질에 대해서는 참고자료 1개의 불순물 함량 정보를 적용하였고, 콘크리트 물질에서는 참고자료 5개의 불순물 함량 정보를 적용하여 평가를 수행하였다. 방사화 핵종 재고량 전산해석 시 중성자속 계산에는 MCNP 전산코드를, 방사화 계산에는 FISPACT 전산코드를 각각 사용하였다. 계산 결과, 금속 물질에서 불순물을 포함한 경우가 그렇지 않은 경우보다 비방사능이 2배 이상 높았으며, 특히 콘크리트에서는 불순물을 포함한 경우가 그렇지 않은 경우보다 최대 30배 이상 비방사능이 높게 계산되었다. 방사화 핵종의 생성반응과 재고량을 분석한 결과, 금속 구조물에서는 불순물 중 Co원소와 중성자에 의해 생성되는 방사화 핵종인 Co-60이, 콘크리트에서는 불순물 중 Co, Eu 원소와 중성자에 의해 생성되는 방사화 핵종인Co-60, Eu-152, Eu-154 이 방사성폐기물 준위 결정에 큰 영향을 미치고 있음을 확인하였다. 본 연구의 결과는 원전 해체 계획 수립 시 방사화 핵종 재고량 평가 및 규제에 활용될 수 있을 뿐 아니라, 해체를 고려한 원전 또는 원자력시설의 설계 단계에서도 참고자료로 활용 될 것으로 판단된다.

원자로 이용률 향상을 위한 냉중성자원 시설의 고장모드영향분석 및 정지이력의 원인분석 (FMEA for CNS Facility and Cause Analysis of Shutdown Events to Improve Reactor Availability)

  • 이윤환;황정식
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.115-120
    • /
    • 2020
  • From 2009 when the CNS facility was installed, the number of reactor failures due to abnormal CNS facility system has increased significantly. Of the total of 19 nuclear reactor shutdowns over the six years from 2009 to 2019, there were 10 nuclear reactor shutdowns associated with the CNS facility, which are very numerous. Therefore, this report intends to analyze the history of nuclear reactor shutdowns due to CNS facility system failure in detail, and to present the root cause and solution to problems. As a result of FMEA implementation of CNS facility system, a total of 76 SPVs were selected. In addition, 10 cases of reactor shutdown history due to CNS facility system abnormalities were analyzed in detailed, and improvement plans for solving the root cause and problem were suggested for each trip history. The results of this study are expected to be able to operate the domestic research reactor and CNS facilities more stably by providing effective measures to prevent recurrence of CNS facilities and reactor trips.

Safety Classification of Systems, Structures, and Components for Pool-Type Research Reactors

  • Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.1015-1021
    • /
    • 2016
  • Structures, systems, and components (SSCs) important to safety of nuclear facilities shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions. Although SSC classification guidelines for nuclear power plants have been well established and applied, those for research reactors have been only recently established by the International Atomic Energy Agency (IAEA). Korea has operated a pool-type research reactor (the High Flux Advanced Neutron Application Reactor) and has recently exported another pool-type reactor (Jordan Research and Training Reactor), which is being built in Jordan. Korea also has a plan to build one more pool-type reactor, the Kijang Research Reactor, in Kijang, Busan. The safety classification of SSCs for pool-type research reactors is proposed in this paper based on the IAEA methodology. The proposal recommends that the SSCs of pool-type research reactors be categorized and classified on basis of their safety functions and safety significance. Because the SSCs in pool-type research reactors are not the pressure-retaining components, codes and standards for design of the SSCs following the safety classification can be selected in a graded approach.

Observing strategy for electromagnetic counterpart of gravitational wave source

  • Paek, Gregory SungHak;Im, Myungshin
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.58.2-58.2
    • /
    • 2019
  • Recent observation of the neutron star merger event, GW170817, through both gravitational wave (GW) and electromagnetic wave (EM) observations opened a new way of exploring the universe, namely, multi-messenger astronomy (MMA). One of the keys to the success of MMA is a rapid identification of EM counterpart through optical/NIR observations. We will present the strategy for prioritization of GW source host galaxy candidates to be observed with narrow-field optical telescopes. Our method relies on recent simulation results regarding plausible properties of GW source host galaxies and the low latency localization map from LIGO/Virgo. We will show the test results for both NS merger and BH merger events using previous events and possible future events and describe observing strategy with our facilities for GW events during the ongoing LIGO/Virgo O3 run.

  • PDF

DEVELOPMENT STATUS OF IRRADIATION DEVICES AND INSTRUMENTATION FOR MATERIAL AND NUCLEAR FUEL IRRADIATION TESTS IN HANARO

  • Kim, Bong-Goo;Sohn, Jae-Min;Choo, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.203-210
    • /
    • 2010
  • The $\underline{H}igh$ flux $\underline{A}dvanced$ $\underline{N}eutron$ $\underline{A}pplication$ $\underline{R}eact\underline{O}r$ (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests.

Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels

  • Prasser, Horst-Michael;Bolesch, Christian;Cramer, Kerstin;Ito, Daisuke;Papadopoulos, Petros;Saxena, Abhishek;Zboray, Robert
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.847-858
    • /
    • 2016
  • An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring sub-channels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of $16{\times}64$ measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

경량 연자성 소재의 군 시설물 적용 시 방사선 차폐효과 분석 (Analysis of Radiation Shielding Effect of Soft Magnetic Material applied to Military Facility)

  • 이상규;이상민;최경준;이병학
    • 한국방사선학회논문지
    • /
    • 제15권2호
    • /
    • pp.191-199
    • /
    • 2021
  • 본 연구의 목적은 경량 연자성 소재의 방사선 차폐 효과를 분석하여 군사시설에 대한 적용 가능성을 확인하는 것이다. 연자성 물질은 EMP 차폐에 효과적인 것으로 알려져 있다. 이 물질이 방사선 차폐에도 효과적이라면 군 방호에 효과적으로 적용이 가능할 것으로 예상된다. 이에 본 연구에서는 감마선 차폐 효과를 확인하기 위해 Cs-137 및 Co-60 선원을 사용하여 실험을 수행하였으며, 중성자 차폐 효과를 평가하기 위해 Monte Carlo N-Particle (MCNP) 모델링을 적용하였다. 그 결과 연자성 소재의 두께가 증가함에 따라 감마선과 중성자의 선형 감쇠 법칙에 의한 차폐성능이 향상됨을 확인할 수 있었다. 따라서 연자성 소재를 군사용 구조물 등에 적용할 경우에 방사선 차폐에 효과적이라는 것을 확인하였다.