• Title/Summary/Keyword: Neutron beam

Search Result 182, Processing Time 0.027 seconds

Phase Separation Algorithm for Ex-core Neutron Signal Analysis

  • Jung, Seung-Ho;Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.399-405
    • /
    • 1997
  • In this study a new phase separated spectral analysis algorithm is proposed to identify CSB vibration mode directly from ex-core neutron signals. Ex-core neutron signals can be decomposed into the global, core support barrel (CSB) beam mode, and CSB shell mode components by the new phase separation algorithm based on the characteristics of Fourier transform. By using the proposed algorithm and the conventional spectral analysis the vibration mode of the CSB and the fuel assembly of Ulchin-1 NPP were identified from measured ex-core neutron signals.

  • PDF

A Study on Transmuted Impurity Atoms formed in Neukon-Irradiated ZnO Thin films (중성자 조사한 ZnO 박막에 생성된 헥전환 불순물들fH 대한 연구)

  • Sun, Kyu-Tae;Park, Kwang-Soo;Han, Hyon-Soo;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.161-164
    • /
    • 2001
  • Transmuted impurity atoms formed in neutron-irradiated ZnO thin films were theoretically identified first and then experimentally confirmed by Photoluminescence (PL). ZnO thin films grown by plasma-assisted molecular beam epitaxy were irradiated by neutron beam at room temperature. Among eight isotropes naturely exiting in ZnO films, only $^{64}Zn$, $^{68}Zn$, $^{70}Zn$ and $^{18}O$ were expected to transmute into $^{65}Cu$, $^{69}Ga$, $^{71}Ga$ and $^{19}F$, respectively. The concentrations of these transmuted atoms were estimated by considering natural abundance, neutron fluence, and neutron cross section. The neutron-irradiated ZnO thin films were characterized by PL. In the PL spectra of these ZnO thin film, the Cu-related PL peaks were seen, but the Ga- or F-associated PL peaks were absent. This observation demonstrates the existence of $^{65}Cu$ in the ZnO. In this paper, emission mechanism of Cu impurities wil1 be described and the reason for the absence of the Ga- or F-associated PL peaks will be discussed.

  • PDF

Interpretation of two SINBAD photon-leakage benchmarks with nuclear library ENDF/B-VIII.0 and Monte Carlo code MCS

  • Lemaire, Matthieu;Lee, Hyunsuk;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1355-1366
    • /
    • 2020
  • A review of the documentation and an interpretation of the NEA-1517/74 and NEA-1517/80 shielding benchmarks (measurements of photon leakage flux from a hollow sphere with a central 14 MeV neutron source) from the SINBAD database with the Monte Carlo code MCS and the most up-to-date ENDF/B-VIII.0 neutron data library are conducted. The two analyzed benchmarks describe satisfactorily the energy resolution of the photon detector and the geometry of the spherical samples with inner beam tube, tritium target and cooling water circuit, but lack information regarding the detector geometry and the distances of shields and collimators relatively to the neutron source and the detector. Calculations are therefore conducted for a sphere model only. A preliminary verification of MCS neutron-photon calculations against MCNP6.2 is first conducted, then the impact of modelling the inner beam tube, tritium target and cooling water circuit is assessed. Finally, a comparison of calculated results with the libraries ENDF/B-VII.1 and ENDF/B-VIII.0 against the measurements is conducted and shows reasonable agreement. The MCS and MCNP inputs used for the interpretation are available as supplementary material of this article.

Neutron imaging for metallurgical characteristics of iron products manufactured with ancient Korean iron making techniques

  • Cho, Sungmo;Kim, Jongyul;Kim, TaeJoo;Sato, Hirotaka;Huh, Ilkwon;Cho, Namchul
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1619-1625
    • /
    • 2021
  • This paper demonstrates the possible nondestructive analysis of iron artifacts' metallurgical characteristics using neutron imaging. Ancient kingdoms of the Korean Peninsula used a direct smelting process for ore smelting and iron bloom production; however, the use of iron blooms was difficult because of their low strength and purity. For reinforcement, iron ingots were produced through refining and forge welding, which then underwent various processes to create different iron goods. To demonstrate the potential analysis using neutron imaging, while ensuring artifacts' safety, a sand iron ingot (SI-I) produced using ancient traditional iron making techniques and a sand iron knife (SI-K) made of SI-I were selected. SI-I was cut into 9 cm2, whereas the entirety of SI-K was preserved for analysis. SI-I was found to have an average grain size of 3 ㎛, with observed α-Fe (ferrite) and pearlite with a body-centered cubic (BCC) lattice structure. SI-K had a grain size of 1-3 ㎛, α-Ferrite on its backside, and martensite with a body-centered tetragonal (BCT) structure on its blade. Results show that the sample's metallurgical characteristics can be identified through neutron imaging only, without losing any part of the valuable artifacts, indicating applicability to cultural artifacts requiring complete preservation.

Conceptional design of an adjustable moderator for BNCT based on a neutron source of 2.8 MeV proton bombarding with Li target

  • Yinan Zhu;Zuokang Lin;Haiyan Yu;Xiaohan Yu;Zhimin Dai
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1813-1821
    • /
    • 2024
  • Beam shaping assembly (BSA) is a vital component in Boron Neutron Capture Therapy (BNCT) for obtaining epithermal neutron beams. Several feasible designs of BSA for accelerator-based BNCT (AB-BNCT) neutron source are carried out based on neutrons by bombarding a natural lithium target with 10 mA, 2.8 MeV proton beams. The calculation results demonstrate that a thickness of 45 cm is appropriate for general moderators referring to the therapeutic parameter of Advanced Depth (AD). A series of optimizations are performed and two results are confirmed: One is that employing the configuration of MgF2 and FLUENTAL combined by 1:1 could improve the therapeutic rate (TR) of tumors at a depth of middle region, and the other one is that the TR of superficial tumors can be increased by adding a 5 cm thick boron-11 secondary moderator at the end of general moderators. As a result, an innovative conception of an adjustable moderator is recommended to BNCT. Compared to the MgF2 moderator with a fixed thickness of 45 cm, the TR value can be improved by a maximum of 47.7 % by using the adjustable moderator. Furthermore, the configuration of adjustable moderator has been designed with regulation method for treating tumors of different depths.

The development of a thermal neutron dosimetry using a semiconductor (반도체형 열중성자 선량 측정센서 개발)

  • Lee, Nam-Ho;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.789-792
    • /
    • 2003
  • pMOSFET having 10 ${\mu}um$ thickness Gd layer has been tested to be used as a slow neutron sensor. The total thermal neutron cross section for the Gd is 47,000 barns and the cross section value drops rapidly with increasing neutron energy. When slow neutrons are incident to the Gd layer, the conversion electrons are emitted by the neutron absorption process. The conversion electrons generate electron-hole pairs in the $SiO_2$ layer of the pMOSFET. The holes are easily trapped in Oxide and act as positive charge centers in the $SiO_2$ layer. Due to the induced positive charges, the threshold turn-on voltage of the pMOSFET is changed. We have found that the voltage change is proportional to the accumulated slow neutron dose, therefore the pMOSFET having a Gd nuclear reaction layer can be used for a slow neutron dosimeter. The Gd-pMOSFET were tested at HANARO neutron beam port and $^{60}CO$ irradiation facility to investigate slow neutron response and gamma response respectively. Also the pMOSFET without Gd layer were tested at same conditions to compare the characteristics to the Gd-pMOSFET. From the result, we have concluded that the Gd-pMOSFET is very sensitive to the slow neutron and can be used as a slow neutron dosimeter. It can also be used in a mixed radiation field by subtracting the voltage change value of a pMOSFET without Gd from the value of the Gd-pMOSFET.

  • PDF

The Characteristics for BNCT facility in Hanaro Reactor

  • Soheigh Suh;Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Yoo, Seong-Yul;Rhee, Chang-Hun;Rhee, Soo-Yong;Jun, Byung-Jin
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.161-163
    • /
    • 2002
  • The BNCT(Boron Neutron Capture Therapy) facility has been developed in Hanaro(High-flux Advanced Neutron Application Reactor), a research reactor of Korea Atomic Energy Research Institute. A typical tangenial beam port is utilized with this BNCT facility. Thermal neutrons can be penetrated within the limits of the possible maximum instead of being filtered fast neutrons and gamma rays as much as possible using the silicon and bismuth single crystals. In addition to, the liquid nitrogen (LN$_2$) is used to cool down the silicon and bismuth single crystals for the increase of the penetrated thermal neutron flux. Neutron beams for BNCT are shielded using the water shutter. The water shutter was designed and manufactured not to interfere with any other subsystem of Hanaro when the BNCT facility is operated. Also, it is replaced with conventional beam port plug in order to cut off helium gas leakage in the beam port. A circular collimator, composed of $\^$6/Li$_2$CO$_3$ and polyethylene compounds, is installed at the irradiation position. The measured neutron flux with 24 MW reactor power using the Au-198 activation analysis method is 8.3${\times}$10$\^$8/ n/cm$^2$ s at the collimator, exit point of neutron beams. Flatness of neutron beams is proven to ${\pm}$ 6.8% at 97 mm collimator. According to the result of acceptance tests of the water shutter, the filling time of water is about 190 seconds and drainage time of it is about 270 seconds. The radiation leakages in the irradiation room are analyzed to near the background level for neutron and 12 mSv/hr in the maximum for gamma by using BF$_3$ proportional counter and GM counter respectively. Therefore, it is verified that the neutron beams from BNCT facility in Hanaro will be enough to utilize for the purpose of clinical and pre-clinical experiment.

  • PDF

Residual stress measurements using neutron diffraction (중성자법에 의한 잔류응력 측정법)

  • Woo, Wanchuck;Kim, Dong-Kyu;An, Gyu-Baek
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.30-34
    • /
    • 2015
  • Residual stresses are inherently introduced into the engineering components during manufacturing including rolling, forging, bending and welding processes. Excessive residual stresses are known to be detrimental to the proper integrity and performance of components. Neutron diffraction has become a well-established technique for the determination of residual stresses in welds. The deep penetration capability of neutrons into most metallic materials makes neutron diffraction a powerful tool for the residual stress measurements through the thickness of the weld specimen. Furthermore, the unique volume-averaged bulk characteristic of the scattering beam and mapping capability in three dimensions is suitable for the engineering purpose. In this presentation, the neutron diffraction measurements of the residual stresses will be introduced and measurement results will highlighted in thick weld plates.

Research for development of our own image processing code for neutron tomography (중성자 토모그래피를 위한 영상처리 자체코드 개발 연구)

  • Kim, Jin Man;Kim, TaeJoo;Yu, Dong In
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • Neutron radiography has been widely used in many research areas due to its different characteristics from X-rays. Neutron tomography is a powerful tool because it can clearly show the inside of an object that the eye cannot see. However, generally, commercial software is used for the reconstruction of neutron tomography. It means that maintenance costs are incurred and analysis is inefficient in some cases. In this respect, our own image processing code is required to reconstruct neutron images efficiently. In this study, an image processing code is developed for reconstruction of cross-sectional images from neutron radiography taken from the side of the object. Using the developed code, cross-sectional images of the sample are successfully reconstructed.

A Study on Transmuted Impurity Atoms Formed in Neutron-Irradiated ZnO Thin Films (중성자 조사한 ZnO 박막에 생성된 핵전환 불순물들에 대한 연구)

  • Kim, Sang-Sik;Seon, Gyu-Tae;Park, Gwang-Su;Im, Gi-Ju;Seong, Man-Yeong;Lee, Bu-Hyeong;Jo, Un-Gap;Han, Hyeon-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.298-304
    • /
    • 2002
  • Transmuted impurity atoms formed in neutron-irradiated ZnO thin films were theoretically identified first and then experimentally confirmed by photoluminescence (PL). ZnO thin films grown by plasma-assisted molecular beam epitaxy were irradiated by neutron beam at room temperature. The ZnO films consist of eight constituent (Zn and O) isotropes, of which four are transmutable by neutron-irradiation; $^{64}$ , $^{68}$ Zn, $^{70}$ Zn and $^{18}$ O were expected to transmute into $^{65}$ Cu, $^{69}$ Ga, $^{71}$ Ga, and $^{19}$ F, respectively. The concentrations of these transmuted atoms were estimated in this study by considering natural abundance, neutron fluence and neutron cross section. The neutron-irradiated ZnO thin films were characterized by PL. In the PL spectra of the ZnO thin films, the Cu-related PL peaks were seen, but the Ga- or F-associated PL peaks were absent. This observation confirmed the existence of $^{65}$ Cu in the ZnO, but it could not do the formation of the other two. In this paper, the emission mechanism of Cu impurities is described and the reason for the absence of the Ga- or F-associated PL peaks is discussed as well.