• Title/Summary/Keyword: Neutron Fluence

Search Result 88, Processing Time 0.021 seconds

Derivation of a Monte Carlo Estimator for Dose Equivalent (몬테칼로법을 위한 선량당량 산정법의 도출)

  • Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.2
    • /
    • pp.89-95
    • /
    • 1985
  • An alternative estimator for dose equivalent was derived. The original LET distribution concept was transformed into a charged particle fluence spectrum concept along with the definition of an average quality factor named slowing-down averaged quality factor by adopting the continuous slowing down approximation. With the alternative estimator, the dose equivalent delivered into a receptor located in a given radiation field can be directly and conveniently estimated in a Monte Carlo procedure. The slowing-down averaged quality factors for the energy range below 10 MeV were evaluated and tabulated for the charged particles which may be generated from the interactions of neutron with the nuclei composing soft tissue.

  • PDF

Relationship of ground level enhancements with solar erupted factors

  • Firoz, K.A.;Cho, Kyung-Suk;Dorotovic, Ivan;Pinter, Teodor;Kaushik, Subhash C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.34.2-34.2
    • /
    • 2010
  • Cosmic rays registered by Neutron Monitors on the surface of the Earth are believed to be coming from outer space, and sometimes also from the exotic objects of the Sun. Ground level enhancement (GLE) is the sudden, sharp and short-lived increase in cosmic rays originated from the Sun. Since GLE is the signature in solar cosmic ray intensity, different solar factors erupted from the Sun can be responsible for causing it. In this context, an attempt has been made to determine quantitative relationships of GLEs > 5% with simultaneous solar, interplanetary and geophysical factors from 1997 through 2006 thereby searching the perpetrators which seem to be causing them. The study has revealed that solar flares are stronger ($0.71{\times}10-4$ w/m2) during GLE peaks than the solar flares ($1.10{\times}10-5$ w/m2) during GLE non-peaks and backgrounds. On the average, the solar wind plasma velocity and interplanetary magnetic field are found stronger during the GLE peaks than the GLE non-peaks and backgrounds indicating that the solar flares, in conjunction with interplanetary shocks, sometimes may cause GLE peaks. Direct proportionality of GLE peaks to simultaneous solar energetic particle (SEP) fluxes imply that the GLE peaks may often be caused by SEP fluxes. Although the high intensity of SEP fluxes are also seen extended few minutes even after GLE peaks, the mean (373.62 MeV) of the GLE associated SEP fluxes is much stronger than the mean (10.35 MeV) of the non-GLE associated SEP fluxes. Evidences are also supported by corresponding SEP fluences that the the mean fluence (${\sim}5.32{\times}107/cm2$) across GLE event was more intense than the mean fluence (${\sim}2.53{\times}106/cm2$) of SEP fluxes across non-GLE event.

  • PDF

New skeletal dose coefficients of the ICRP-110 reference phantoms for idealized external fields to photons and neutrons using dose response functions (DRFs)

  • Bangho Shin;Yumi Lee;Ji Won Choi;Soo Min Lee;Hyun Joon Choi;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1949-1958
    • /
    • 2023
  • The International Commission on Radiological Protection (ICRP) Publication 116 was released to provide a comprehensive dataset of the dose coefficients (DCs) for external exposures produced with the adult reference voxel phantoms of ICRP Publication 110. Although an advanced skeletal dosimetry method for photons and neutrons using fluence-to-dose response functions (DRFs) was introduced in ICRP Publication 116, the ICRP-116 skeletal DCs were calculated by using the simple method conventionally used (i.e., doses to red bone marrow and endosteum approximated by doses to spongiosa and/or medullary cavities). In the present study, the photon and neutron DRFs were used to produce skeletal DCs of the ICRP-110 reference phantoms, which were then compared with the ICRP-116 DCs. For photons, there were significant differences by up to ~2.8 times especially at energies <0.3 MeV. For neutrons, the differences were generally small over the entire energy region (mostly <20%). The general impact of the DRF-based skeletal DCs on the effective dose calculations was negligibly small, supporting the validity of the ICRP-116 effective DCs despite their skeletal DCs derived from the simple method. Meanwhile, we believe that the DRF-based skeletal DCs could be beneficial in better estimates of skeletal doses of individuals for risk assessments.

Fast Neutron Dosimetry in Nuclear Criticality Accidents (핵임계사고시(核臨界事故時)에 있어서 속중성자선량(速中性子線量) 측정(測定))

  • Yook, Chong-Chul;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.2 no.1
    • /
    • pp.17-23
    • /
    • 1977
  • The neutron dosimetrical parameters, i. e., the fission neutron spectrum-averaged cross-sections and the fluence-to-dose conversion factors have been calculated for some threshold detectors with the aid of a computer. The threshold detectors under investigation were the $^{115}In(n,\;n')^{115m}In,\;^{32}S(n,\;p)^{32}P$ and $^{27}Al(n,\;{\alpha})^{24}Na$ reactions. It is revealed that the average cross-sections($\bar{\sigma}$) for the $^{32}S(n,\;p)^{32}P$ reaction are independent of the spectral functions, namely, the Watt-Cranberg and Maxwellian forms. In the case of the $^{27}Al(n,\;{\alpha})^{24}Na$ reaction a variation of the $\bar{\sigma}$ values appears to be highly dependent on the fissioning types. It seems that both the average cross-section for the $^{115}In(n,\;n')^{11m}In$ reaction and the conversion factor are insensitive to the spectral deformation of fission neutrons. These phenomena make it applicable to use indium as a possible integral fast neutron dosimeter in nuclear criticality accidents provided that the virgin fission neutrons are completely free from the scattered neutrons.

  • PDF

Effect of Magneto-acoustic Emission of Reactor Pressure Vessel Materials Irradiated by Neutrons (중성자에 조사된 원자로 압력용기 재료(SA508)의 Magneto-acoustic emission 효과)

  • Ok, Chi-Il;Lee, Jong-Kyu;Park, Duck-Gun;Hong, Jun-Hwa;Kim, Jang-Whan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.6
    • /
    • pp.433-438
    • /
    • 1999
  • Magneto-acoustic emission (MAE) energy and hardness were measured in the reactor pressure vessel steel (SA508 Steel) for the various neutron fluence, irradiated dose up to $10^{18}n/cm^2$. The hardness was nearly a constant up to $10^{16}n/cm^2$, but it was rapidly increased with an increase of the neutron irradiation above $10^{17}n/cm^2$. It may be considered that the increase of hardness is due to the hindrance of dislocation motion induced defect clusters by irradiation. On the other hand. the MAE energy was slowly decreased as the neutron irradiation increased up to $10^{16}n/cm^2$ and it was rapidly decreased with an increase of the neutron irradiation above $10^{17}n/cm^2$. The decrease of the MAE energy may be considered as an increase of the defect clusters which is very sensitive to the $90^{\circ}$ domain wall motion. Furthermore, the change of MAE energy and hardness had nearly a linear relationship. but the change of MAE energy was more significant than the change of the hardness. Therefore, MAE may be considered as a very useful technique for the nondestructive evaluation of irradiation damage.

  • PDF

Evaluation of Photoneutron Dose in Radiotherapy Room Using MCNPX (MCNPX를 이용한 방사선 치료실의 광중성자 선량 평가)

  • Park, Eun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.6
    • /
    • pp.283-289
    • /
    • 2015
  • Recently, high energy photon radiotherapy is a growing trend for increasing therapy results. Commonly, if you use high energy photons above 6~8 MeV nominal accelerator voltage, It lead the photo-nuclear reaction and the generation of photo-neutron are accompanied and these problematic factors are issued in the view of radiation protection. Therefore, in this study analyzed for dose distribution of photo-neutron in radiotherapy room based on MCNPX. As a result, absorbed dose is increased sharply from 10 MV to 12 MV. It was founded that the rapid increasement of photoneutron fluence was related to the absorbed dose at above 10 MV. Also, in case of the recommendation of ICRP 103, the outcome of an exchanged equivalent dose which based on calculated an absorbed dose, showed lower equivalent dose than ICRP 60 by reflecting the contribution of secondary photon for absorbed dose of human body in the low energy band.

The Effect of Analysis Variables on the Failure Probability of the Reactor Pressure Vessel by Pressurized Thermal Shock (가압열충격에 의한 원자로 압력용기의 파손확률에 미치는 해석변수의 영향)

  • Jang, Chang-Heui;Jhung, Myung-Jo;Kang, Suk-Chull;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.693-700
    • /
    • 2004
  • The probabilistic fracture mechanics(PFM) is a useful analytical tool to assess the integrity of reactor pressure vessel(RPV) at the event of pressurized thermal shock(PTS). In PFM, the probabilities of flaw initiation and propagation are estimated by comparing the applied stress intensity factor with the fracture toughness calculated by the simulation of various stochastic variables. It is known that the results of PFM analyses are dependent on the choice of the stochastic parameters and assumptions. Of the various variables and assumptions, we investigated the effects of the RT$_{NDT}$ shift equations, fracture toughness curves, and flaw distributions on the PFM results for the three PTS transients. The results showed that the combined effects of the RT$_{NDT}$ shift equations and fracture toughness curves are complicated and dependent on the characteristics of the transients, the chemistry of the materials, the fast neutron fluence, and so on.

Probabilistic Evaluation of RV Integrity Under Pressurized Thermal Shock (가압열충격을 받는 원자로용기의 확률론적 건전성 평가)

  • Kim, Jong-min;Bae, Jae-hyun;Sohn, Gap-heon;Yoon, Ki-seok;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.90-95
    • /
    • 2004
  • The probabilistic fracture analysis is used to determine the effects of uncertainties involved in material properties, location and size of flaws, etc, which can not be addressed using a deterministic approach. In this paper the probabilistic fracture analysis is applied for evaluating the RV(Reactor Vessel) under PTS(Pressurised Thermal Shock). A semi-elliptical axial crack is assumed in the inside surface of RV. The selected random parameters are initial crack depth, neutron fluence, chemical composition of material (copper, nickel and phosphorous) and $RT_{NDT}$. The deterministically calculated $K_I$ and crack tip temperature are used for the probabilistic calculation. Using Monte Carlo simulation, the crack initiation probability for fixed flaw and PNNL(Pacific Northwest National Laboratory) flaw distribution is calculated. As the results show initiation probability of fixed flaw is much higher than that of PNNL distribution, the postulated crack sizes of 1/10t in this paper and 1/4t of ASME are evaluated to be very conservative.

  • PDF

A way Analyzing Oxide Layer on an Irradiated CANDU-PHWR Pressure Tube Using an EPMA and X-ray Image Mapping

  • Jung, Yang Hong;Kim, Hee Moon
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.118-128
    • /
    • 2021
  • The oxide layer in samples taken from an irradiated Zr-2.5Nb pressure tube from a CANDU-PHWR reactor was analyzed using electron probe microanalysis (EPMA). The examined tube had been exposed to temperatures ranging from 264 to 306 ℃ and a neutron fluence of 8.9 × 1021 n/cm2 (E > 1 MeV) for the maximum 10 effective full-power years in a nuclear power plant. Measuring oxide layer thickness generally employs optical microscopy. However, in this study, analysis of the oxide layer from the irradiated pressure tube components was undertaken through X-ray image mapping obtained using EPMA. The oxide layer characteristics were analyzed by X-ray image mapping with 256 × 256 pixels using EPMA. In addition, the slope of the oxide layer was measured for each location. A particular advantage of this study was that backscattered electrons and X-ray image mapping were obtained at a magnification of 9,000 when 20 kV volts and 30 uA of current were applied to radiation-shielded EPMA. The results of this study should usefully contribute to the study of the oxide layer properties of various types of metallic materials irradiated by high radiation in nuclear power plants.

Study of the Nondestructive Test Method for the Embrittlement Evaluation of Nuclear Reactor Vessel Material by $M{\ddot{o}}ssbauer$ Spectroscopy ($M{\ddot{o}}ssbauer$ 분광법에 의한 원자로 용기재료의 비파괴적 중성자 조사평가에 대한 연구)

  • Jung, M.M.;Jang, K.S.;Yoo, K.B.;Kim, G.M.;Yoon, I.S;Hong, C.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.183-190
    • /
    • 2000
  • The purpose of this study is to evaluate the magnetic property change of the nuclear reactor vessel steel irradiated by fast neutrons using $M{\ddot{o}}ssbauer$ spectroscopy, and the effects of the defects produced by neutron irradiation on the changes using X-ray diffraction. The specimens, fabricated with the dimension of $23mm{\times}18mm{\times}70{\mu}m$, were irradiated by neutron fluence from $10^{12}n/cm^2\;to\;10^{18}n/cm^2$ at 343K. Throughout the experiments, it is understood that (1) the X-ray diffraction measurement shows that the change of crystal nature is started at the irradiation of $10^{16}n/cm^2$ and a crystal structure has been severely damaged at the irradiation over $10^{17}n/cm^2$, (2) the analysis of the $M{\ddot{o}}ssbauer$ spectra has shown that magnetic transition phenomena occur at the irradiation over $10^{17}n/cm^2$ and (3) both methods can be utilized as nondestructive test methods for the embrittlement evaluation of materials irradiated by fast neutrons.

  • PDF