• Title/Summary/Keyword: Neutron Fluence

Search Result 88, Processing Time 0.025 seconds

A Strategy for Kori Unit 1 Pressure Vessel Fluence Reduction through a Modification of Outer Assembly Configuration Using Monte Carlo Analysis

  • Kim, Jae-Cheon;Kim, Jong-Kyung;Kim, Jong-Oh
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.515-519
    • /
    • 1997
  • The purpose of this study is to reduce the fast neutron fluence at the reactor pressure vessel(RPV) and to provide a basis for plant-life extension. In this study, different neutron absorbers were employed in the core outer assemblies of Kori Unit 1 Cycle 14. The modified assemblies were used to calculate fast neutron fluence at the RPV and to evaluate reduction of outer assembly power and total power in core. By comparison with the case of no suppression fixture, the fast neutron fluence of a case with two rows stainless steel around the assembly with natural uranium pins is decreased by 85.8%. It is noted that the modification of outer assembly is more efficient than the previous low leakage loading pattern (LLLP) applied to Kori Unit 1. Also, compared fast neutron fluence in Cycle 1 with Cycle 14, fast neutron fluence at the RPV between Cycle 1 and Cycle 14 is not significantly different. It is found that LLLP applied to the Kori Unit 1 has not contributed to fast neutron fluence reduction at the RPV.

  • PDF

Investigating the Fluence Reduction Option for Reactor Pressure Vessel Lifetime Extension

  • Kim, Jong-Kyung;Shin, Chang-Ho;Seo, Bo-Kyun;Kim, Myung-Hyun;Kim, Dong-Kyu;Lee, Goung-Jin;Oh, Su-Jin
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.408-422
    • /
    • 1999
  • To reduce the fast neutron fluence which deteriorates the RPV integrity, additional shields were assumed to be installed at the outer core structures of the Kori Unit 1 reactor, and its reduction effects were examined. Full scope Monte Carlo simulation with MCNP4A code was made to estimate the fast neutron fluence at the RPV. An optimized design option was found from various choices in geometry and material for shield structure. It was expected that magnitude of fast neutron fluence would be reduced by 39% at the circumferential weld of the RPV, resulting in extension of plant lifetime by 4.6 EFPYs based on the criterion of PTS requirement It was investigated that the nuclear characteristics and thermal hydraulic factors at the internal core were only negligibly influenced by the installation of additional shield structure.

  • PDF

Neutron fluence measurement at HANARO using fluence monitor method (Fluence Monitor를 이용한 HANARO 노심 내 중성자 플루언스 측정)

  • Lee, Seung-Kyu;Jo, Kwang-Ho;Choo, Kee-Nam;Park, Jin-Suk;Kim, Yong-Kyun
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.200-208
    • /
    • 2011
  • The neutron fluence measurement and evaluation technology is very important for material irradiation test. The most essential technology in this study is the neutron irradiation evaluation method using a fluence monitor. The fluence monitors were fabricated with metal wires of the purity ${\geq}$ 99.9%, whose dimensions were 0.1mm diameter, about 3 mm length, and around 150-200 ${\mu}g$ mass range. Three wire samples (Fe, Ni, Ti) were prepared for one irradiation aluminum capsule. Five capsules were irradiated in the OR5 hole of the HANARO reactor at 30 MW power for about 25 days. After irradiation tests, radiation activities were measured with the high purity germanium (HPGe) detector. The reaction rates were calculated by using the measured radiation activity data, and then neutron fluence were obtained from the reaction rates and the weighted neutron cross section with calculated neutron spectrum at the fluence monitor position.

Neutron Fluence Evaluation for Reactor Pressure Vessel Using 3D Discrete Ordinates Transport Code RAPTOR-M3G (3차원 수송계산 코드(RAPTOR-M3G)를 이용한 원자로 압력용기 중성자 조사량 평가)

  • Maeng, Young Jae;Lim, Mi Joung;Kim, Byoung Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.107-112
    • /
    • 2014
  • The Code of Federal Regulations, Title 10, Part 50, Appendix H requires surveillance program for reactor pressure vessel(RPV) that the peak neutron fluence at the end of the design life of the vessel will exceed $1.0E+17n/cm^2$ (E>1.0MeV). 2D/1D Synthesis method based on DORT 3.1 transport calculation code has been widely used to determine fast neutron(E>1.0MeV) fluence exposure to RPV in the beltline region. RAPTOR-M3G(RApid Parallel Transport Of Radiation-Multiple 3D Geometries) performing full 3D transport calculation was developed by Westinghouse and KRIST(Korea Reactor Integrity Surveillance Technology) and applied for the evaluations of In-Vessel and Ex-Vessel neutron dosimetry. The reaction rates from measurement and calculation were compared and the results show good agreements each other.

EVALUATION OF THE UNCERTAINTIES IN THE MODELING AND SOURCE DISTRIBUTION FOR PRESSURE VESSEL NEUTRON FLUENCE CALCULATIONS

  • Kim, Yong-Il;Hwang, Hae-Ryong
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.237-241
    • /
    • 2001
  • The uncertainties associated with fluence calculation at the pressure vessel have been evaluated for the Korean Next Generation Reactor, APR1400. To obtain uncertainties, sensitivity analyses were performed for each of the parameters important to calculated fast neutron fluence. Among the important parameters to the overall uncertainties, reactor modeling and core neutron source were examined. Mechanical tolerances, composition and density variations in the reactor materials as well as application of $r-{\theta}$ geometry in rectilinear region contribute to uncertainty in the reactor modeling. Depletion and buildup of fissile nuclides, instrument error related to core power level, uncertainty of fuel pin burnup, and variation of long-term axial peaking factors are main contributors to the core neutron source uncertainty. The sensitivity analyses have shown that the uncertainty in the fluence calculation at the reactor pressure vessel is +12%.

  • PDF

Calculation of Reactor Pressure Vessel Fluence Using TORT Code

  • Shin, Chul-Ho;Kim, Jong kyung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.771-776
    • /
    • 1998
  • TORT is employed for fast neutron fluence calculation at the reactor pressure vessel. KORI Unit 1 reactor at cycle 1 is modeled for this calculation. Three-dimensional cycle averaged assembly power distributions for KORI Vnit 1 at cycle 1 are calculated by using the core physics code, NESTLE 5.0. The root mean square error is within 4.3% compared with NDR (Nuclear Design Report) far all burnup steps. The C/E (Calculated/Experimental) values for the in-vessel dosimeters distribute between 0.98 and 1.36. The most updated cross-section library. BUGLE-96 based on ENDF/B-VI is used for the neutron fluence calculation. The makimum fast neutron nun calculated on reactor pressure vessel for KORI Unit 1 operated for 411.41 effgctive full power days is 1.784x10$^{18}$ n/$\textrm{cm}^2$. The position of the maximum neutron fluence in RPV wall 1/4 T is nearby 60cm below the midplane at zero degree.

  • PDF

EVALUATION OF FAST NEUTRON FLUENCE FOR KORI UNIT 3 PRESSURE VESSEL

  • Yoo, Choon-Sung;Kim, Byoung-Chul;Chang, Kee-Ok;Lee, Sam-Lai;Park, Jong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.665-674
    • /
    • 2006
  • Three-dimensional neutron flux and fluence of Kori Unit 3 were evaluated using the synthesis technique described in Regulatory Guide 1.190 for all reactor geometry. For this purpose DORT neutron transport calculations from Cycle 1 to Cycle 15 were performed using BUGLE-96 cross-section library. The calculated flux and fluence were validated by comparing the calculated reaction rates to the measurement data from the dosimetry sensor set of the $5^{th}$ surveillance capsule withdrawn at the end of cycle 15 of Kori Unit 3. And then the best estimation of the neutron exposures for the reactor vessel beltline region was performed using the least square evaluation. These results can be used in the assessment of the state of embrittlement of Kori Unit 3 pressure vessel.

Electrical characteristics and deep-level transient spectroscopy of a fast-neutron-irradiated 4H-SiC Schottky barrier diode

  • Junesic Park;Byung-Gun Park;Hani Baek;Gwang-Min Sun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.201-208
    • /
    • 2023
  • The dependence of the electrical characteristics on the fast neutron fluence of an epitaxial 4H-SiC Schottky barrier diode (SBD) was investigated. The 30 MeV cyclotron was used for fast neutron irradiation. The neutron fluences evaluated through Monte Carlo simulation were in the 2.7 × 1011 to 1.45 × 1013 neutrons/cm2 range. Current-voltage and capacitance-voltage measurements were performed to characterize the samples by extracting the parameters of the irradiated SBDs. Neutron-induced defects in the epitaxial layer were identified and quantified using a deep-level transient spectroscopy measurement system developed at the Korea Atomic Energy Research Institute. As the neutron fluence increased from 2.7 × 1011 to 1.45 × 1013 neutrons/cm2, the concentration of the Z1/2 defects increased by approximately 20 times. The maximum defect concentration was estimated as 1.5 × 1014 cm-3 at a neutron fluence of 1.45 × 1013 neutrons/cm2.

Development of the Graphite-Moderated Neutron Calibration Fields Using 241Am-Be Sources in JAEA-FRS

  • Nishino, Sho;Tanimura, Yoshihiko;Ebata, Yoshiaki;Yoshizawa, Michio
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.211-215
    • /
    • 2016
  • Background: The moderated neutron calibration fields using $^{241}Am$-Be sources and a graphite moderator have been constructed at the Facility of Radiation Standard (FRS) in the Japan Atomic Energy Agency (JAEA). Materials and Methods: The neutron spectra of the fields were evaluated by the Monte-Carlo calculations and measurements using the Bonner Multi-sphere Spectrometer. Results and Discussion: The fields have continuous neutron spectra from several MeV to thermal neutron energy, with fluence-averaged energies of 0.84 MeV and 0.60 MeV. Reference values of fluence rates and ambient/personal dose equivalent rates were determined from neutron spectra by measurements. Conclusion: Currently, the fields are available for calibration or performance test of neutron measuring instruments.

Design of a New Capsule Controlling Neutron Flux and Fluence and Temperature of lest Specimen

  • Choo, Kee-Nam;Kang, Young-Hwan;Taiji Hoshiya;Motoji Niimi;Takashi Saito
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.148-157
    • /
    • 1997
  • A new capsule that has a unique structure in which the test environments including neutron flux and fluence, and irradiation temperature can be controlled precisely during irradiation, was conceptually designed. The capsule structure and instrumentation were successfully designed according to the JMTR's standard procedures of capsule design. Based on the target irradiation, the details of the irradiation such as neutron fluence and irradiation temperature ore calculated and the related capsule safety was evaluated. In addition, the effects of design parameters including the changes in inner-capsule configuration, heater capacity, and Helium gas pressure on the specimen temperature were analyzed with a computer program. Through these thermal and strength evaluations, this capsule was proved to be safe during the irradiation in the JMTR.

  • PDF