• Title/Summary/Keyword: Neutron Dose

Search Result 197, Processing Time 0.024 seconds

An Assessment of the Secondary Neutron Dose in the Passive Scattering Proton Beam Facility of the National Cancer Center

  • Han, Sang-Eun;Cho, Gyuseong;Lee, Se Byeong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.801-809
    • /
    • 2017
  • The purpose of this study is to assess the additional neutron effective dose during passive scattering proton therapy. Monte Carlo code (Monte Carlo N-Particle 6) simulation was conducted based on a precise modeling of the National Cancer Center's proton therapy facility. A three-dimensional neutron effective dose profile of the interior of the treatment room was acquired via a computer simulation of the 217.8-MeV proton beam. Measurements were taken with a $^3He$ neutron detector to support the simulation results, which were lower than the simulation results by 16% on average. The secondary photon dose was about 0.8% of the neutron dose. The dominant neutron source was deduced based on flux calculation. The secondary neutron effective dose per proton absorbed dose ranged from $4.942{\pm}0.031mSv/Gy$ at the end of the field to $0.324{\pm}0.006mSv/Gy$ at 150 cm in axial distance.

Fast Neutron Beam Dosimetry (속중성자선의 선량분포에 관한 연구)

  • Lee Hyo Nam;Ji Young Hoon;Ji Kwang Soo;Lee Dong Han
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.71-81
    • /
    • 1997
  • I. Objective and Importance of the Project We have been using MC-50 cyclotron and NT-50 neutron therapy machine for treating cancer patients since 1986 at Korea Cancer Center Hospital. It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine (Task Group 18), European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induce the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. II. Scope and Contents of the Project For establishing a unique technique of measurement and inventing a standard method of measurement of fast neutron beam, 1. to grasp the physical characteristics of neutron therapy machine 2. to study the principles for measrement of fast neutron beam 3. to get the dose distribution (dose rate, percent-depth dose, flatness etc) throught the actual measurement 4. to compare our data with those being cited world-widely.

  • PDF

Neutron Personal Dose Equivalent Evaluation Using Panasonic UD-809P Type TLD Albedo Dosimeters (Panasonic UD-809P 알비도 열형광선량계를 이용한 중성자 개인선량당량 평가)

  • Shin, Sang-Woon;Son, Joong-Kwon;Jin, Hua
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.3
    • /
    • pp.143-154
    • /
    • 1999
  • Panasonic UD-809P type albedo neutron TL dosimeters mounted on a water phantom were used to measure neutron personal dose equivalent in a Korean nuclear power plant. From the measured TL readings, personal dose equivalents from thermal, epithermal and fast neutrons were evaluated by using a method adopted in a neutron dose calculation algorithm for Panasonic UD-809P type albedo neutron TL dosimeters, which was suggested in a Panasonic TLD System User's Manual. The results showed that personal dose equivalent from fast neutrons could not be adequately evaluated in a field with high thermal neutron fraction to be encountered in a nuclear power plant. This seems to be related to the incomplete incidence of albedo thermal neutrons to the TL dosimeters. In order to evaluate appropriately the personal dose equivalent from fast neutrons in the field condition, new method fer the neutron dose calculation algorithm was suggested. In this new method, neutrons are grouped into thermal neutrons and fast neutrons. For each neutron component, equations for TL response, sensitivity factor, calibration factor and personal dose equivalent were derived.

  • PDF

COMPUTATIONAL DETERMINATION OF NEUTRON DOSE EQUIVALENT LEVEL AT THE MAZE ENTRANCE OF A MEDICAL ACCELERATOR FACILITY

  • Kim, Hong-Suk;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • An empirical formula fur the neutron dose equivalent at the maze entrance of medical accelerator treatment rooms was derived on the basis of a Monte Carlo simulation. The simulated neutron dose equivalents around the Varian medical accelerator by the MCNPX code were employed. Two cases of target rotational planes were considered: parallel and perpendicular to maze walls. Most of the maximum neutron dose equivalents at the doorway were found when the target rotational planes were parallel to maze walls and the beams were directed to the inner maze entrances. The neutron dose equivalents at the outer maze entrances were calculated for about 698 medical accelerator facilities which were generated from the geometry configurations of running treatment rooms, based on such gantry rotation that produces the maximum neutron dose at the doorway. The results calculated with the empirical formula in this study were compared with those calculated by the Kersey method for 7 operating facilities. It was found that the maximum disagreement between the calculation of this study and that of the Kersey method was a factor of 8.54 with the value calculated by the Kersey method exceeding that of this study. It was concluded that the kersey method estimated the neutron dose equivalent at the doorway computed by MCNPX more conservatively than this study technique.

Electron Accelerator Shielding Design of KIPT Neutron Source Facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.785-794
    • /
    • 2016
  • The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ~0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper.

Measurement of Photo-Neutron Dose from an 18-MV Medical Linac Using a Foil Activation Method in View of Radiation Protection of Patients

  • Yucel, Haluk;Cobanbas, Ibrahim;Kolbasi, Asuman;Yuksel, Alptug Ozer;Kaya, Vildan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.525-532
    • /
    • 2016
  • High-energy linear accelerators are increasingly used in the medical field. However, the unwanted photo-neutrons can also be contributed to the dose delivered to the patients during their treatments. In this study, neutron fluxes were measured in a solid water phantom placed at the isocenter 1-m distance from the head of an18-MV linac using the foil activation method. The produced activities were measured with a calibrated well-type Ge detector. From the measured fluxes, the total neutron fluence was found to be $(1.17{\pm}0.06){\times}10^7n/cm^2$ per Gy at the phantom surface in a $20{\times}20cm^2$ X-ray field size. The maximum photo-neutron dose was measured to be $0.67{\pm}0.04$ mSv/Gy at $d_{max}=5cm$ depth in the phantom at isocenter. The present results are compared with those obtained for different field sizes of $10{\times}10cm^2$, $15{\times}15cm^2$, and $20{\times}20cm^2$ from 10-, 15-, and 18-MV linacs. Additionally, ambient neutron dose equivalents were determined at different locations in the room and they were found to be negligibly low. The results indicate that the photo-neutron dose at the patient position is not a negligible fraction of the therapeutic photon dose. Thus, there is a need for reduction of the contaminated neutron dose by taking some additional measures, for instance, neutron absorbing-protective materials might be used as aprons during the treatment.

Secondary Neutron Dose in Carbon-ion Radiotherapy: Investigations in QST-NIRS

  • Yonai, Shunsuke;Matsumoto, Shinnosuke
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.39-47
    • /
    • 2021
  • Background: The National Institutes for Quantum and Radiological Science and Technology-National Institute of Radiological Sciences (QST-NIRS) has continuously investigated the undesired radiation exposure in ion beam radiotherapy mainly in carbon-ion radiotherapy (CIRT). This review introduces our investigations on the secondary neutron dose in CIRT with the broad and scanning beam methods. Materials and Methods: The neutron ambient dose equivalents in CIRT are evaluated based on rem meter (WENDI-II) measurements. The out-of-field organ doses assuming prostate cancer and pediatric brain tumor treatments are also evaluated through the Monte Carlo simulation. This evaluation of the out-of-field dose includes contributions from secondary neutrons and secondary charged particles. Results and Discussion: The measurements of the neutron ambient dose equivalents at a 90#x00B0; angle to the beam axis in CIRT with the broad beam method show that the neutron dose per treatment dose in CIRT is lower than that in proton radiotherapy (PRT). For the scanning beam with the energy scanning technique, the neutron dose per treatment dose in CIRT is lower than that in PRT. Moreover, the out-of-field organ doses in CIRT decreased with distance to the target and are less than the lower bound in intensity-modulated radiotherapy (IMRT) shown in AAPM TG-158 (American Association of Physicists in Medicine Task Group). Conclusion: The evaluation of the out-of-field doses is important from the viewpoint of secondary cancer risk after radiotherapy. Secondary neutrons are the major source in CIRT, especially in the distant area from the target volume. However, the dose level in CIRT is similar or lower than that in PRT and IMRT, even if the contributions from all radiation species are included in the evaluation.

Saccharomyces cerevisiae의 물질대사에 미치는 중성자의 영향

  • 이민재
    • Journal of Plant Biology
    • /
    • v.7 no.4
    • /
    • pp.9-14
    • /
    • 1964
  • According to the results measured the respiratory quotient of Saccharomyces cerevisiae with neutron radiation by manometric direct method, the respiratory quotient of them was stimulated at the dose(7$\times$106N/$\textrm{cm}^2$/sec) of neutron radiation for 60 seconds, and was inhibited in each group irradiated at the high dose (7$\times$108N/$\textrm{cm}^2$/sec) of neutron. Its physiological effects influenced on neutron had relations with respiratory quotient, reproductive rate and fermentation in the curve of normal logarithmic phase. The multiple reactions which appeared in yeast, indicated that a great deal of physiological function were closely correlated with the irradiated dosage of neutron. The kinds of free amino acid in yeast irradiated with neutron were different from those of unirradiated yeast. The activityof dehydrogenase system accelerated the metabolic function of yeast irradiated at some low dose of neutron. By this results, it may demonstrate that the fact which the phenomena obtained in the stimulation of neutron possess its character for several generation, is dependent on the theory of mutation. Subsequently, it seemed reasonable certain dominant type of microorganisms.

  • PDF

Quantitative Evaluation of Radiation Dose Rates for Depleted Uranium in PRIDE Facility

  • Cho, Il Je;Sim, Jee Hyung;Kim, Yong Soo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.378-383
    • /
    • 2016
  • Background: Radiation dose rates in PRIDE facility is evaluated quantitatively for assessing radiation safety of workers because of large amounts of depleted uranium being handled in PRIDE facility. Even if direct radiation from depleted uranium is very low and will not expose a worker to significant amounts of external radiation. Materials and Methods: ORIGEN-ARP code was used for calculating the neutron and gamma source term being generated from depleted uranium (DU), and the MCNP5 code was used for calculating the neutron and gamma fluxes and dose rates. Results and Discussion: The neutron and gamma fluxes and dose rates due to DU on spherical surface of 30 cm radius were calculated with the variation of DU mass and density. In this calculation, an imaginary case in which DU density is zero was added to check the self-shielding effect of DU. In this case, the DU sphere was modeled as a point. In case of DU mixed with molten salt of 50-250 g, the neutron and gamma fluxes were calculated respectively. It was found that the molten salt contents in DU had little effect on the neutron and the gamma fluxes. The neutron and the gamma fluxes, under the respective conditions of 1 and 5 kg mass of DU, and 5 and $19.1g{\cdot}cm^{-3}$ density of DU, were calculated with the molten salt (LiCl+KCl) of 50 g fixed, and compared with the source term. As the results, similar tendency was found in neutron and gamma fluxes with the variation of DU mass and density when compared with source spectra, except their magnitudes. Conclusion: In the case of the DU mass over 5 kg, the dose rate was shown to be higher than the environmental dose rate. From these results, it is concluded that if a worker would do an experiment with DU having over 5 kg of mass, the worker should be careful in order not to be exposed to the radiation.

Neutron dose rate analysis of the new CONSTOR® storage cask for the RBMK-1500 spent nuclear fuel

  • Narkunas, Ernestas;Smaizys, Arturas;Poskas, Povilas;Naumov, Valerij;Ekaterinichev, Dmitrij
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1869-1877
    • /
    • 2021
  • This paper presents the neutron dose rate analysis of the new CONSTOR® RBMK-1500/M2 storage cask intended for the spent nuclear fuel storage at Ignalina Nuclear Power Plant in Lithuania. These casks are designed to be stored in a new "closed" type interim storage facility, with the capacity to store up to 202 CONSTOR® RBMK-1500/M2 casks. In 2016 y, the "hot trials" of this new facility were conducted and 10 CONSTOR® RBMK-1500/M2 casks loaded with the spent nuclear fuel were transported to the dedicated storage places in this facility. During "hot trials", the dose rate measurements of the CONSTOR® RBMK-1500/M2 casks were performed as the dose rate is one of the critical parameter to control and it must be below design (and safety) criteria. Therefore, having the actual data of the spent nuclear fuel characteristics, the neutron dose rate modeling of the CONSTOR® RBMK-1500/M2 cask loaded with this particular fuel was also performed. Neutron dose rate modeling was performed using MCNP 5 computer code with very detailed geometrical representation of the cask and the fuel. The obtained modeling results were compared with the measurement results and it was revealed, that modeling results are generally in good agreement with the measurements.