• 제목/요약/키워드: Neutral-point voltage ripple

검색결과 26건 처리시간 0.025초

계통 불평형시 과도 응답 특성이 개선된 고압 이중여자 유도형 풍력발전 시스템의 제어 전략 (Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance)

  • 한대수;서용석
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.91-103
    • /
    • 2015
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage wind power system under unbalanced grid conditions. Negative sequence control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors: fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple indicates the most cost-effective performance in terms of torque pulsation. The least active power pulsation is produced by a control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. A combination of these two control algorithms depending on operating requirements and depth of grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions, leading to a high-performance DFIG wind turbine system with unbalanced grid adaptive features.

Eliminating the Third Harmonic Effect for Six Phase Permanent Magnet Synchronous Generators in One Phase Open Mode

  • Liu, Jian;Yang, Gui-Jie;Li, Yong;Gao, Hong-Wei;Su, Jian-Yong
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.92-104
    • /
    • 2014
  • To insure stable operation and eliminate twice torque ripple, a topology for a six phase permanent magnet synchronous generator (SP-PMSG) with a neutral point connected together was analyzed in this paper. By adopting an extended transformation matrix, the mathematic model of the space vector control was established. The voltage and torque equations were deduced while considering the third harmonic flux and inductance. In addition, the suppression third harmonic method and the closed loop control strategy were proposed. A comparison analysis indicates that the cooper loss minimum method and the current magnitude minimum method can meet different application requirements. The voltage compensation amount for each of the methods was deduced which also takes into account the third harmonic effect. A simulation and experimental result comparison validates the consistency through theoretical derivation. It can be seen that all of the two control strategies can meet the requirements of post-fault.

멀티레벨 인버터를 위한 간략화된 공간 전압벡터 변조 방안 (Simplified Space Vector PWM Method for Multi-level Inverters)

  • 서재형;송영주;김광섭;이철구;방상석;최창호;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.1905-1907
    • /
    • 1998
  • The multi-level approach seems to be best suited to high power, high voltage ac drives with low torque ripple and fast dynamic response. If high control performance is required, space vector control becomes desirable, and the task becomes time critical. In this paper, a simplified space vector PWM method for the control of a three level inverter is proposed. As the PWM is simple in structure, it is easy to implement and the fluctuation of the neutral point potential of DC link can be supressed effectively. The simulation results demonstrate that the proposed PWM strategy can be applied to high power, high voltage inverter systems. And its application to multi-level inverter is easily done on the same principle.

  • PDF

NPC와 H-Bridge 컨버더의 부스트 벡터와 커패시터 전압의 해석 (Analysis of Capacitor Voltage and Boost Vector in Neutral-Point-Clamped and H-Bridge Converter)

  • 김정균;김태진;강대욱;현동석
    • 전력전자학회논문지
    • /
    • 제8권3호
    • /
    • pp.274-284
    • /
    • 2003
  • 대용량 전력변환기기인 멀티-레벨 컨버터는 전동기구동시스템 및 유연송전시스템 등에 널리 사용되고 있다. 이중 H-Bridge 컨버터는 캐스캐이드 형태를 사용하여 멀티-레벨로의 확장이 용이한 장점으로 인해 shunt형 기기로 점차 응용이 확대되고 있다. 정상 상태에서 대략 0.7∼0.8의 변조지수 범위에서 작동한다. 고변조지수에서는 부스트 벡터인 zero vector가 인가되지 않아도 DC-link 전압은 일정하게 유지된다. 이것은 3-레벨 컨버터의 여러 벡터 중 zero vector 이외에도 또 다른 boost vector가 존재한다는 것을 의미한다. 본 논문은 boost vector의 원리를 살펴보고 3레벨 컨버터에서 zero vector와 또 다른 boost vector와의 차이점을 고찰하였다. 또한 본 논문은 두 토폴로지의 충전 전류와 커패시터 전압을 해석하고 비교한다 이 전압과 전류는 스위칭 상태와 기준전압과 관련되어 있고 이것을 이용하여 각 커패시터의 충전전류와 전압리플에 대한 계산 방법을 제안하였고 다양한 DC-Link 전압제어 방법을 시뮬레이션을 통해 비교하였다.

Novel Switching Table for Direct Torque Controlled Permanent Magnet Synchronous Motors to Reduce Torque Ripple

  • Arumugam, Sivaprakasam;Thathan, Manigandan
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.939-954
    • /
    • 2013
  • The Direct Torque Control (DTC) technique for Permanent Magnet Synchronous Motors (PMSM) is receiving increased attention due to its simplicity and robust dynamic response when compared with other control techniques. The classical switching table based DTC results in large flux and torque ripples in the motors. Several studies have been reported in the literature on classical DTC. However, there are only limited studies that actually discuss or evaluate the classical DTC. This paper proposes, novel switching table / DTC methods for PMSMs to reduce torque ripples. In this paper, two DTC schemes are proposed. The six sector and twelve sector methodology is considered in DTC scheme I and DTC scheme II, respectively. In both DTC schemes a simple modification is made to the classical DTC structure. The two level inverter available in the classical DTC is eliminated by replacing it with a three level Neutral Point Clamped (NPC) inverter. To further improve the performance of the proposed DTC scheme I, the available 27 voltage vectors are allowed to form different groups of voltage vectors such as Large - Zero (LZ), Medium - Zero (MZ) and Small - Zero (SZ), where as in DTC scheme II, all of the voltage vectors are considered to form a switching table. Based on these groups, a novel switching table is proposed. The proposed DTC schemes are comparatively investigated with the classical DTC and existing literatures through theory analysis and computer simulations. The superiority of the proposed DTC method is also confirmed by experimental results. It can be observed that the proposed techniques can significantly reduces the torque ripples and improves the quality of current waveform when compared with traditional and existing methods.

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.