• Title/Summary/Keyword: Neutral salts

Search Result 41, Processing Time 0.025 seconds

Effects of Neutral Salts on Alkaline Hydrolysis of Poly(ethylene terephthalate) (II) - Anionic Effect - (중성염이 Poly(ethylene terephthalate) 직물의 알칼리 가수분해에 미치는 영향(II))

  • Do, Sung-Guk;Cho, Hwan
    • Textile Coloration and Finishing
    • /
    • v.6 no.2
    • /
    • pp.10-16
    • /
    • 1994
  • Neutral salts have negative or positive effects on the rates of many chemical reactions and also on the rates of acidic and alkaline hydrolysis of carboxylic esters. The direction of neutral salt effects on the hydrolysis of ester depends on the charge of esters. Neutral salts accelerate alkaline hydrolysis of esters with negative charge, but decelerate alkaline hydrolysis of esters with positive charge, and have little effect on the alkaline hydrolysis of neutral esters. It is expected that the rate of the alkaline hydrolysis of Poly(ethylene terephthalte) (PET), polymeric solid carboxylic polyester with carboxyl end group at the polymer end, is also influenced positively by neutral salts. In the present work, to clarify the mechanism of the neutral salt effect on the alkaline hydrolysis of PET, many salts with different anions like NaF, NACl, NaBr, NaI were added to the aqueous alkaline solutions. Then PET was hydrolyzed with aqueous solutions of many salts in alkali metal hydroxides under various conditions. Some conclusions obtained from the experimental results were summarized as follows. The reaction rate of the alkaline hydrolysis of PET was increased by the addition of neutral salts and In k was increased nearly linearly with the square root of ionic strength of reaction medium. This fact suggested that the ionic strength effect by Debye-Huckel and Bronsted theory was exerted on the reaction. The specific salt effect was also observed. The reaction rate was increased with the decrease in the nucleophilicity of anions of neutral salts, i.e., in the order of $F^-$ <$Cl^-$<$Br^-$<$I^-$. It was thought that the reaction rate was increased in the order of $F^-$ <$Cl^-$<$Br^-$<$I^-$. because the completion of anions with $OH^-$ for carbonyl carbon became weaker with the decrease in the nucleophilicity and with the increase in the size of anions.

  • PDF

Accelerating Effect of Neutral Salts on Alkaline Hydrolysis of Poly(ethylene terephthalate) (I) - Cationic Effect - (중성염의 폴리에틸렌 텔레프탈레이트의 알칼리 가수분해 촉진효과에 관한 연구(I) - 양이온의 영향 -)

  • Do, Sung-Guk;Cho, Hwan
    • Textile Coloration and Finishing
    • /
    • v.6 no.1
    • /
    • pp.33-43
    • /
    • 1994
  • In the present work, to clarify the mechanism of the neutral salt effect on the alkaline hydrolysis of PET, many salts with different cations like LiCl, NaCl, KCl, CsCl were added to the aqueous alkaline solutions. Then PET was hydrolyzed with aqueous solutions of many salts in alkali metal hydroxides under various conditions. Some conclusions obtained from the experimental results were summarized as follows. The reaction rate of the alkaline hydrolysis of PET was increased by the addition of neutral salts and In k was increased nearly linearly with the square root of ionic strength of reaction medium. This fact suggested that the ionic strength effect by Debye-Huckel and Bronsted theory was exerted on the reaction. The specific salt effect was also observed. The reaction rate was increased with the increase in the electrophilicity of cations of neutral salts, i. e., in the order of $Cs^+$/ < $K^+$/ $a^+$/ $i^$^+$. It was considered that the reaction rate was increased in the order of C $s^+$. < $K^+$. $a^+$. $i^+$. because the lowering effect of the cations on the negative charge of PET surface was increased with the electrophilicity of cations. It was thought that $E_{a}$ was increased because the cations of neutral salts decreased the negative charge of PET surface. It, however, was inferred from the increase in ${\Delta}$S* and the decrease in the ${\Delta}$G* that the cations of neutral salts associated with PET increased the collision frequency between carbonyl carbon and OH- ion and then accelerated the reaction rate.te.

  • PDF

Studies on Silk Contraction Treated with Neutral Salts (중성염에 의한 견사의 수축작용)

  • Lee, Gwang-Gil;Lee, Yong-U;Nam, Jung-Hui
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.1
    • /
    • pp.44-55
    • /
    • 1997
  • This study was carried out to find out the relationship between qualities and contraction phenomenon of silk fibers by treatment of concentrated neutral salts. The contraction effects of silk fibers showed the critical point on the treatment conditions of concentration, temperature and time, among three kinds of neutral salts such as calcium nitrate, calcium chloride and lithium bromide. But, The silk fibers, pretreated with bromide and/or formaldehyde, did not show the contraction upon treating with calcium nitrate. This indicates that tyrosine and serine can be correlated with the contraction reaction because of coupling these amino acids with bromide and formaldehyde. In conclusion, a mechanism for the contraction of silk fiber with highly concentrated calcium nitrate solution is supposed as follows. At the initial stage of ration, the water was penetrated into the amorphous regions and fibers swollen, therefore, the contraction took place mainly in amorphous regions, which have plenty of functional groups with hydroxyl residues. Then, as the calcium nitrate is penetrated into the microfibril, the gydrogen bonds of tyrosine and serine residues and broken and crystalline regions are more and more influenced by increasing concentration of calcium nitrate solution. Microgibrils of crystalline regions become entangled, contracted to linear direction and rearranged to form new stable hydrogen bonds.

  • PDF

Effect of Neutral Salts on the Reactive Dyeing of Silk(I) -Effect of Cations- (중성염이 견의 반응염색에 미치는 영향(I) - 양이온의 영향-)

  • 도성국;박찬헌;권지윤
    • Textile Coloration and Finishing
    • /
    • v.12 no.6
    • /
    • pp.372-379
    • /
    • 2000
  • Four kinds of neutral salts with different cations, LiCl, NaCl, KCl, and CsCl, were added to the dye bath to accurately understand the effect of cations on the reactive dyeing of silk with C. I. Reactive Black 5. The cations of salts added lowered the negative surface potential of the silk, improving equilibrium adsorption and the accessibility of the dyestuff to the fiber greatly and speeding up the dyeing rate in the order of $Li^+>Na^+>K^+>Cs^+$. The activation energy$(E_a)$ for the dyeing was in the order of$Li^+>Na^+>K^+>Cs^+$ but the activation free energy$(\Delta{G}^*)$, or the real energy barrier for the reaction, was in the order of $Li^+>Na^+>K^+>Cs^+$ because the degree of the contribution of E$^{a}$ to the activation entropy$(\Delta{S}^*)$ was $Li^+>Na^+>K^+>Cs^+$. It was found from this result that LiCl had the strongest lowering effect on the negative surface potential of silk. The decrease in $\Delta{S}^*$ should be attributed to the loosely bonded activated complex of dyestufffs, cations and fiber molecules at transition state. It was clarified from the Bronsted equation that salts had the ionic strength effect and the specific salt effect on the reactive dyeing.

  • PDF

Studies on the Shrinkage of Silk Yarn by Neutral Salts (견의 중성염류에 의한 염축에 관한 연구)

  • 이용우;이광길
    • Journal of Sericultural and Entomological Science
    • /
    • v.33 no.2
    • /
    • pp.87-92
    • /
    • 1991
  • The shrinkages and physical properties of silk yarn were studied on the effect of treatment concentration, time and temperature with various neutral salts. The degummed silk yarn was shrunk about 35 percent by highly concentrated solution of Ca(NO3)2 on conditions of S.G.(special gravity) 1.45 at 9$0^{\circ}C$ or S. G. 1.46 at 8$0^{\circ}C$. About 40 percent of silk yarn was contracted in length by the treatment of CaCl2 solution on conditions of S. G. 1.33 at 9$0^{\circ}C$ for 5 mins. or at 85$^{\circ}C$ for 10 mins. By treating the concentrated solution of LiBr the silk yarn showed about 40 percent of shrinkage on a conditions of S. G. 1.38, $25^{\circ}C$ 24hrs. The physical properties of salt-treated silk yarn could be significantly changed with shrinkage variations. There were some differences in shrinkages between different type of salts. However, it was observed that generally the tenacity was decreased and breaking elongation increased as the shrinkage increased. The bulkiness of salt-treated silk yarn was increased by 110 to 120 percent compared with untreated yarn.

  • PDF

Effect of Neutral Salts on the Reactive Dyeing of Silk (II) - Effect of Anions - (중성염이 견의 반응염색에 미치는 영향 (II) - 음이온의 영향 -)

  • 도성국;박찬헌;권지윤
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.114-119
    • /
    • 2001
  • Four kinds of neutral sodium salts with different anions, NaF, NaCl, NaBr, and NaI, were added to the dye bath to accurately understand the effect of anions on the reactive dyeing of silk with C. I. Reactive Black 5. The sodium cation towered the negative surface potential of the silk and increased the dye-uptake on fille fabric as reported previously. However, because of the discrepancy in the anions'inhibition power from cation's lowering: the surface negative potential the amount of the dye on the silk fiber was different from each other in the order of $F^->Cl^-> Br^-I^-$. The activation energy(E$_{a}$) lot the dyeing was in the order of $F^->Cl^-> Br^-I^-$ but the dye-uptake on the fabric and the activation free energy$(\Delta{G}^*)$, the real energy barrier fort the reaction, were in the order of $F^->Cl^-> Br^-I^-$ because the strength of the interaction of the anions with sodium cations was the salute as the order of the latter. In other words F$^{[-1000]}$ exerted the weakest electrostatic force on $Na^+$ and competed with the dyestuff anions least of all. The decrease in $\Delta{S}^*$ may be due to the looesly bonded activated complex of dyestuff anions, sodium cations and fiber molecules at transition state. It was clarified from the Brёnsted equation that sodium salts with different anions also had fille ionic strength effect and the specific salt effect on the reactive dyeing.g.

  • PDF

Effects of concentrations and types of neutral salts on the foaming properties of sodium caseinate (중성염의 종류 및 농도가 sodium caseinate의 거품성에 미치는 영향)

  • Yang, Seung-Taek;Park, Hyung-Sun
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.434-439
    • /
    • 1993
  • To investigate the effects of neutral salts on the foaming properties of sodium caseinate, turbidity, surface tension, absolute viscosity, foaming ability and foam stability of the caseinate solutions(5%, w/v) with added NaF, $Na_2SO_4$, NaCl, $NaNO_3$, and NaSCN at concentrations of 0.1, 0.5, 1.0, 1.5 and 2.0 M were examined. NaCl and $NaNO_3$ improved the foaming ability compared to sodium caseinate without salt, and also $Na_2SO_4$ and NaF did the foaming ability at the concentrations of 0.1M and 0.5M, while NaSCN did not improve the foaming ability. For foaming ability optimal concentrations of the salts were 0.5, 1.5, and 1.0 M in $Na_2SO_4$, NaCl, and NaSCN, respectively. Additions of $Na_2SO_4$, NaF and $NaNO_3$ at 0.5 M concentrations improved the foam stability of sodium caseinate by 825%, 615%, and 53% compared to control, while those of NaSCN reduced foam stability.

  • PDF

Syntheses and Arene Transport Studies of Water Soluble Aminomethylcalixarene (수용성 아미노메틸칼릭스아렌의 합성 및 방향족 물질의 통과실험 연구)

  • Kye Chung Nam;Dae Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.933-940
    • /
    • 1992
  • Calix[6]arene react with formaldehyde and secondary amines to yields water soluble Mannich bases which can be converted to the corresponding quaternary salts. Treatment of the quaternary salts with a nucleophile such as cyano, ethoxy, and hydride yields p-substituted calix[6]arenes. Calix[8]arene too react with formaldehyde and diallyl amine to yield a water soluble Mannich base. The transport of neutral arenes through an aqueous phase along a concentration gradient mediated by those of water soluble calixarenes as molecular carrier was studied in a U-type cell. Naphthalene, anthracene, pyrene, and fluoranthene are tested as a neutral solid guest compounds for the transport experiment.

  • PDF

Effect of Neutral Salts on the Reactive Dyeing of Silk (Ⅱ) - Effect of Anions - (중성염이 견의 반응염색에 미치는 영향 (Ⅱ) - 음이온의 영향 -)

  • Do, Seong Guk;Park, Chan Heon;Gwon, Ji Yun
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.28-28
    • /
    • 2001
  • Four kinds of neutral sodium salts with different anions, NaF, NaCl, NaBr, and NaI, were added to the dye bath to accurately understand the effect of anions on the reactive dyeing of silk with C. I. Reactive Black 5. The sodium cation lowered the negative surface potential of the silk and increased the dye-uptake on fille fabric as reported previously. However, because of the discrepancy in the anions′inhibition power from cation′s lowering the surface negative potential the amount of the dye on the silk fiber was different from each other in the order of $F^-\;>\;Cl^-\;>\; Br^-\;>\;I^-$. The activation energy($E_a$) for the dyeing was in the order of $F^-\;>\;Cl^-\;>\; Br^-\;>\;I^-$ but the dye-uptake on the fabric and the activation free energy(Δ$G^*$), the real energy barrier for the reaction, were in the order of $F^-\;>\;Cl^-\;>\; Br^-\;>\;I^-$ because the strength of the interaction of the anions with sodium cations was the same as the order of the latter. In other words $F^-$ exerted the weakest electrostatic force on $Na^+$and competed with the dyestuff anions least of all. The decrease in Δ$S^*$may be due to the looesly bonded activated complex of dyestuff anions, sodium cations and fiber molecules at transition state. It was clarified from the Bronsted equation that sodium salts with different anions also had fille ionic strength effect and the specific salt effect on the reactive dyeing.

Dehydration and pore swelling effects on the transfer of PEG through NF membranes

  • Escoda, Aurelie;Bouranene, Saliha;Fievet, Patrick;Deon, Sebastien;Szymczyk, Anthony
    • Membrane and Water Treatment
    • /
    • v.4 no.2
    • /
    • pp.127-142
    • /
    • 2013
  • In order to investigate the significance of "salting-out" and "pore swelling" effects on the nanofiltration of neutral solutes, rejection properties of two NF ceramic and polymeric membranes were studied with single polyethyleneglycol (PEG) solution and mixed PEG/inorganic electrolyte solutions. For both membranes, the rejection rate of PEG was found to decrease significantly in the presence of ions. In the case of the ceramic membrane (rigid pores), this phenomenon was imputed to the sole partial dehydration of PEG molecules induced by the surrounding ions. This assumption was confirmed by the lowering of the PEG rejection rates which followed the Hofmeister series. Experimental data were used to compute the resulting decrease in the Stokes radius of PEG molecules in the presence of the various salts. Concerning the polymeric membrane, the decrease in the rejection rate was found to be systematically higher than for the ceramic membrane. The additional decrease was then ascribed to the swelling of the pores. The experimental data of rejection rates were then used to compute the variation in the mean pore radius in the presence of the various salts. The pore swelling phenomenon due to accumulation of counterions inside pores was supported by electrokinetic charge density measurements.