• Title/Summary/Keyword: Neutral ionophores

Search Result 8, Processing Time 0.022 seconds

Ion-Selective Electrodes in Drugs Analysis: Verapamil-Selective Polymeric Membrane Electrodes Based on Calix[4]arene and Dibenzo-18-crown-6-ether Ionophores (이온 선택성 전극을 이용한 의약품 정량: Calix[4]arene과 Dibenzo-18-crown-6-ether에 의한 verapamil-선택성 polymeric membrane electrode)

  • 이은엽;김성진;김영학;김재현;허문회;안문규
    • YAKHAK HOEJI
    • /
    • v.39 no.1
    • /
    • pp.61-67
    • /
    • 1995
  • PVC membrane electrodes based on the lipophilic neutral carrier, dibenzo-18-crown-6, cyclic oligomers of teit-butylphenol-formaidehyde condensates, calix[4]arenes as the active sensors for verapamil have been prepared and tested in a variety of plasticizers. At pH 5.0, the electrode exhibits a Nernstian response in the range of 10$^{-2}$~5$\times$10$^{-5}$ M verapamil with a slope of 49.1$\pm$0.5mV per concentration decade. The electrode constructed in this work can be used continuously for at least 1 month before any damage to the membrane occurs. And the analyses of the local anesthetic amine, which are good to select a specific compound in a mixed solution, were also accomplished by using of another neutral carrier, a DB18C6, for comparing with calix[4]arene.

  • PDF

Synthesis of Azo-functionalized Calix[4]arenes and Its Application to Chloride-selective Electrode as Ionophores

  • Lee, Hyo-Kyoung;Yeo, Hee-Kyoung;Park, Duck-Hee;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1737-1741
    • /
    • 2003
  • Azo-functionalized calix[4]arenes as ionophores for chloride-selective electrode, 5,11,17,23-Tetra-tert-butyl-25,27-bis[(N,N-dimethyl-aniline-azo-phenylthioureido)ethyl]oxy-26,28-dihydroxycalix[4]arene (4a) and 5,11,17,23-Tetra-tert-butyl-25,27-bis[(N,N-dimethyl-aniline-azo-phenylthioureido)ethyl]oxy-26,28-dimethoxycalix[4]arene (4b) were synthesized. The PVC membrane electrode based on azo-functionalized calix[4]arene 4a with o-NPOE exhibits a linear stable response over a wide concentration range ($1.5{\times}10^{-4}-1.0{\times}10^{-1}$) with a slope of -52.0 mV/decade and a detection limit of log[$Cl^-$] = -4.02. This ionophore-based membrane exhibited improved selectivity for chloride anion compared with classical Hofmeister series.

Polymeric Acetate-Selective Electrodes Based on meso-(α,α,α,α)-Tetrakis-[(2-arylphenylurea)phenyl]porphyrins: Electormic and pH Effects

  • Lee, Hyo-Kyoung;Song, Ki-ju;Seo, Hyung-Ran;Jeon, Seung-won
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1409-1412
    • /
    • 2002
  • Polymeric membrane electrodes for acetate anion based on meso-(${\alpha}$,${\alpha}$,${\alpha}$,${\alpha}$)-5,10,15,20-tetrakis[2-(penta-fluorophenylurea) phenyl]porphyrin I and similar urea-functionalized porphyrins Ⅱ-Ⅳ as neutral ionophores were prepared. The membrane based on porphyrin I exhibits the best potentiometric properties in pH 6.0 rather than pH 7.0: linear stable response over a wide concentration range (6.0 ${\times}$$10^{-5}$-1.0 ${\times}$$10^{-2}$) with a slope of -59.6 mV/decade and a detection limit of log[CH3CO$O^-$] = -5.32. Selectivity coefficients obtained from the matched potential method (MPM) in pH 6.0 indicate that interferences of hydrophobic anions are very small for the membranes of porphyrins I and II having the strong withdrawing group. The electronic effect of urea-functionalized porphyrins and pH effect of buffer solutions are discussed on the potentiometric response.

Lipophilic Crown-4 Derivatives as Lithium Ionophores for Lithium Ion Selective Liquid Membrane Electrodes

  • Jae Sang Kim;Sung Ouk Jung;Shim Sung Lee;Si-Joong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.123-127
    • /
    • 1993
  • New lipophilic Crown-4 compounds of 16-membered rings containing furan (neutral carrier,I), tetrahydrofuran (neutral carrier,II) and lithium complex of the latter (neutral carrier,III) have been synthesized and tested as the active sensors for lithium ion in poly(vinyl chloride) (PVC) membrane electrode, in the presence and absence of an anion excluder, tetrakis(4-chloro-phenyl)borate (KTClPB), 2-nitrophenyl phenyl ether (NPPE), tris(2-ethylhexyl)phosphate (TEHP), o-nitrophenyl octyl ether (NPOE), dioctyl adipate (DOA), bis(2-ethylhexyl)adipate (BEHA), di-n-octylphenyl phosphonate (DOPP) were used as plasticizing solvent mediators. The electrode response function had a nearly Nernstian slope of 54-61 mV per decade (25$^{\circ}$C) within the concentration range of $10^{-1}-10^{-4}$ M LiCl and the detection limits for all electrodes were ca. $5{\times}10^{-4}$ M. The response time of the electrode was faster at the higher lithium concentration and the response of the electrode was stable for longer than 6 months. The sensor membranes exhibit improved response times and increased lifetimes as compared to the system described earlier.

Silicone Rubber Blended with Polyurethane as the Matrix for Ion-Selective Membrane Electrodes

  • Lee, Hyun Jung;Rho, Kyung Lae;Kim, Chang Yong;Oh, Bong Kyun;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.623-630
    • /
    • 1995
  • Silicone rubber-based sodium-selective membranes are developed for solid-state ion sensors. It was shown that the potetiometric performance of SR-based membranes are greatly dependent on the type of neutral carriers employed; among the three ionophores, N,N,N',N'-tetracyclohexyl-1,2-phenylenedioxydiacetamide (ETH 2120), bis[(12-crown-4)methyl]dodecylmethylmalonate (D12C4DMM) and monensin methyl ester (MME), examined, only ETH 2120 was compatible with the SR-based matrix. Addition of about 20 wt% plasticizer to the SR-based matrix provided the resulting membranes with potentiometric properties essentially equivalent to those of the corresponding PVC-based membranes. Owing to the strong adhesive strength of SR-based membranes, the CWEs coated \vith those membranes exhibited long lifetime with conventional electrode-like performance. Blending of PU into the SR matrix increased the lifetime of CWEs from two weeks to one month.

  • PDF

Comparative Study of Holmium (III) Selective Sensors Based on Thiacalixarene and Calixarene Derivatives as an Ionophore

  • Singh, Sanjay;Rani, Geeta
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2229-2237
    • /
    • 2012
  • The two chelates based on calix[4]arene and thiacalix[4]arene have been synthesized and used as neutral ionophores for preparing PVC based membrane sensor selective to $Ho^{3+}$ ion. The addition of potassium tetrakis(4-chlorophenyl)borate (KTpClPB) and various plasticizers, viz., NDPE, o-NPOE, DOP, TEP and DOS have been found to improve significantly the performance of the sensors. The best performance was obtained with the sensor no. 6 having membrane of $L_2$ with composition (w/w) ionophore (2%): KTpClPB (4%): PVC (37%): NDPE (57%). This sensor exhibits Nernatian response with slope $21.10{\pm}0.3mV/decade$ of activity in the concentration range $3.0{\times}10^{-8}-1.0{\times}10^{-2}M\;Ho^{3+}\;ion$, with a detection limit of $1.0{\times}10^{-8}M$. The proposed sensor performs satisfactorily over a wide pH range of 2.8-10, with a fast response time (5 s). The sensor was also found to work successfully in partially non-aqueous media up to 25% (v/v) content of methanol, ethanol and acetonitrile, and can be used for a period of 4 months without any significant drift in potential. The electrode was also used for the determination of $Ho^{3+}$ ions in synthetic mixtures of different ions and the determination of the arsenate ion in different water samples.

Benzothiazole Substituted Benzocrown Ether-Based Potassium Ion-Selective Membrane Electrodes (벤조티아졸기를 갖는 벤조크라운에테르를 전극물질로 사용한 $K^+$ 이온선택성 막전극)

  • Hong, Uk Sun;Kwon, Hye Kyong;Cha, Geun Sig;Nam, Hakhyun;Chang, Seung Hyun;Chung, Kwang Bo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.9
    • /
    • pp.698-704
    • /
    • 1995
  • The ion-selective membrane fabricated with 33 wt% PVC, 66 wt% o-NPOE and 1 wt% 4'-benzothiazolylbenzo-15-crown-5 (TB15C5) as a neutral carrier exhibited an enhanced selectivity to potassium ion over sodium ion compared to those prepared with other 15-crown-5 or 18-crown-6 derivatives. The potentiometric properties (response slope, selectivity, detection limits and lifetime) of TB15C5-based ISE membranes along with those based on valinomycin, benzo-15-crown-5 (B15C5), 4'-aminobenzo-15-crouwn-5 (AB15C5), benzo-18-crown-6 (B18C6), dibenzo-18-crown-6 (DB18C6) and bis[(benzo-15-crown-5)-4'-ylmethyl]pimelate (PI-Ⅱ) ionophores were carefully examined under the same experimental conditions. The enhanced selectivity of TB15C5-based membrane to potassium is explained in terms of the effect of the benzothiazol functional group and the distribution coefficients of metal ions.

  • PDF

Determination of Complex Formation Constant of Sodium-Selective Ionophores in Solvent Polymeric Membranes (용매 고분자막 상에 고정된 나트륨 이온선택성 물질의 착물형성상수 결정)

  • Kang, Tae Young;Kim, Sung Bae;Oh, Hyon Joon;Han, Sang Hyun;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.466-473
    • /
    • 2000
  • The complex formation constants (${\beta}_{MLn}$) of potassium and various sodium-selective neutral carriers in solvent polymeric membranes have been determined using solvent polymeric membrane-based optodes and ion-selective electrodes (ISEs). Two different types of PVC-based membranes containing the H^+selective chromoionophore (ETH 5294) with and without a sodium ionophore (4-tert-bntylcalix[4]arenetetraacetic acid tetraethyl ester, ETH 2120, bis[(12-crown-4)methyl] dodecylmethylmalonate or monensin methyl ester) were prepared and their optical responses to either the changes in alkali metal cation (e.g., sodium and potassium) concentrations at a fixed pH (0.05 M Tris-HCl, pH 7.2) or varying pH at a fixed alkali metal cation concentration (0.1 M) were measured. The same type of membranes were also mounted in conventional electrode body and their potentiometric responses to varying pH at a fixed alkali metal cation concentration (0.1 M) were measured. The complex formation constants of the ligand could be calculated from the calibration plots of the relative absorbance vs. the activity ratios of cation and proton ($a_{M^+}/a_{H^+}$) and of the emf vs. pH. It was confirmed that the ratio values of the complex formation constants for the primary and interfering ions are closely related to the experimental selectivity coefficients of ISEs.

  • PDF